The attached patch implements delinearization of array accesses in the
Fortran front end, something that has been discussed for a long time.
I've been asked to try to get this patch committed on the OG10 branch
since it is blocking some further optimization work with Graphite for
OpenACC kernels regions. I have a mainline version of this patch as
well that I can send to anyone interested in trying it out, but TBH, I
don't think this is ready for mainline yet. The current status is that
there are still two gfortran tests that are regressing
(gfortran.dg/graphite/id-9.f and
gfortran.dg/vect/fast-math-mgrid-resid.f), and while it's been confirmed
that this helps with Graphite optimizations as intended, we haven't yet
run any benchmarks to confirm that it doesn't make other things slower.
(It might, for instance, be appropriate to only delinearize when
Graphite optimizations are also enabled.)
Anyway, I thought that for the OG10 branch I ought to also put this out
for review/objection instead of just pushing it immediately. Unless
somebody explicitly approves the patch meanwhile, I will probably hold
off until after the first of the year before pushing it, since many of
us are going to be away until then anyway.
-Sandra
commit bde348ad056b57f97d581205e75d083b17a8d69c
Author: Sandra Loosemore <san...@codesourcery.com>
Date: Thu Dec 17 08:13:00 2020 -0800
Fortran: delinearize multi-dimensional array accesses
The Fortran front end presently linearizes accesses to
multi-dimensional arrays by combining the indices for the various
dimensions into a series of explicit multiplies and adds with
refactoring to allow CSE of invariant parts of the computation.
Unfortunately this representation interferes with Graphite-based loop
optimizations. It is difficult to recover the original
multi-dimensional form of the access by the time loop optimizations
run because parts of it have already been optimized away or into a
form that is not easily recognizable, so it seems better to have the
Fortran front end produce delinearized accesses to begin with, a set
of nested ARRAY_REFs similar to the existing behavior of the C and C++
front ends. This is a long-standing problem that has previously been
discussed e.g. in PR 14741 and PR61000.
This patch is an initial implementation for explicit array accesses
only; it doesn't handle the accesses generated during scalarization of
whole-array or array-section operations, which follow a different code
path.
2020-12-17 Sandra Loosemore <san...@codesourcery.com>
Tobias Burnus <tob...@codesourcery.com>
gcc/
* expr.c (get_inner_reference): Handle NOP_EXPR like
VIEW_CONVERT_EXPR.
gcc/fortran/
* lang.opt (-param=delinearize=): New.
* trans-array.c (get_class_array_vptr): New, split from...
(build_array_ref): ...here.
(get_array_lbound, get_array_ubound): New, split from...
(gfc_conv_array_ref): ...here. Additional code refactoring
plus support for delinearization of the array access.
gcc/testsuite/
* gfortran.dg/assumed_type_2.f90: Adjust patterns.
* gfortran.dg/graphite/block-3.f90: Remove xfails.
* gfortran.dg/graphite/block-4.f90: Likewise.
* gfortran.dg/inline_matmul_24.f90: Adjust patterns.
* gfortran.dg/no_arg_check_2.f90: Likewise.
* gfortran.dg/pr32921.f: Likewise.
* gfortran.dg/reassoc_4.f: Disable delinearization for this test.
diff --git a/gcc/expr.c b/gcc/expr.c
index b2aa23e..c450ce7 100644
--- a/gcc/expr.c
+++ b/gcc/expr.c
@@ -7383,6 +7383,7 @@ get_inner_reference (tree exp, poly_int64_pod *pbitsize,
break;
case VIEW_CONVERT_EXPR:
+ case NOP_EXPR:
break;
case MEM_REF:
diff --git a/gcc/fortran/lang.opt b/gcc/fortran/lang.opt
index f37242c..fb0e72d 100644
--- a/gcc/fortran/lang.opt
+++ b/gcc/fortran/lang.opt
@@ -513,6 +513,10 @@ fdefault-real-16
Fortran Var(flag_default_real_16)
Set the default real kind to an 16 byte wide type.
+-param=delinearize=
+Common Joined UInteger Var(flag_delinearize_aref) Init(1) IntegerRange(0,1) Param Optimization
+Delinearize array references.
+
fdollar-ok
Fortran Var(flag_dollar_ok)
Allow dollar signs in entity names.
diff --git a/gcc/fortran/trans-array.c b/gcc/fortran/trans-array.c
index a3b3ac9..54773c0 100644
--- a/gcc/fortran/trans-array.c
+++ b/gcc/fortran/trans-array.c
@@ -3557,11 +3557,9 @@ add_to_offset (tree *cst_offset, tree *offset, tree t)
}
}
-
static tree
-build_array_ref (tree desc, tree offset, tree decl, tree vptr)
+get_class_array_vptr (tree desc, tree vptr)
{
- tree tmp;
tree type;
tree cdesc;
@@ -3585,19 +3583,74 @@ build_array_ref (tree desc, tree offset, tree decl, tree vptr)
&& GFC_CLASS_TYPE_P (TYPE_CANONICAL (type)))
vptr = gfc_class_vptr_get (TREE_OPERAND (cdesc, 0));
}
+ return vptr;
+}
+static tree
+build_array_ref (tree desc, tree offset, tree decl, tree vptr)
+{
+ tree tmp;
+ vptr = get_class_array_vptr (desc, vptr);
tmp = gfc_conv_array_data (desc);
tmp = build_fold_indirect_ref_loc (input_location, tmp);
tmp = gfc_build_array_ref (tmp, offset, decl, vptr);
return tmp;
}
+/* Get the declared lower bound for rank N of array DECL which might
+ be either a bare array or a descriptor. This differs from
+ gfc_conv_array_lbound because it gets information for temporary array
+ objects from AR instead of the descriptor (they can differ). */
+
+static tree
+get_array_lbound (tree decl, int n, gfc_symbol *sym,
+ gfc_array_ref *ar, gfc_se *se)
+{
+ if (sym->attr.temporary)
+ {
+ gfc_se tmpse;
+ gfc_init_se (&tmpse, se);
+ gfc_conv_expr_type (&tmpse, ar->as->lower[n], gfc_array_index_type);
+ gfc_add_block_to_block (&se->pre, &tmpse.pre);
+ return tmpse.expr;
+ }
+ else
+ return gfc_conv_array_lbound (decl, n);
+}
+
+/* Similarly for the upper bound. */
+static tree
+get_array_ubound (tree decl, int n, gfc_symbol *sym,
+ gfc_array_ref *ar, gfc_se *se)
+{
+ if (sym->attr.temporary)
+ {
+ gfc_se tmpse;
+ gfc_init_se (&tmpse, se);
+ gfc_conv_expr_type (&tmpse, ar->as->upper[n], gfc_array_index_type);
+ gfc_add_block_to_block (&se->pre, &tmpse.pre);
+ return tmpse.expr;
+ }
+ else
+ return gfc_conv_array_ubound (decl, n);
+}
+
/* Build an array reference. se->expr already holds the array descriptor.
This should be either a variable, indirect variable reference or component
reference. For arrays which do not have a descriptor, se->expr will be
the data pointer.
- a(i, j, k) = base[offset + i * stride[0] + j * stride[1] + k * stride[2]]*/
+
+ There are two strategies here. In the traditional case, multidimensional
+ arrays are explicitly linearized into a one-dimensional array, with the
+ index computed as if by
+ a(i, j, k) = base[offset + i * stride[0] + j * stride[1] + k * stride[2]]
+
+ However, we can often get better code using the Graphite framework
+ and scalar evolutions in the middle end, which expects to see
+ multidimensional array accesses represented as nested ARRAY_REFs, similar
+ to what the C/C++ front ends produce. Delinearization is controlled
+ by flag_delinearize_aref. */
void
gfc_conv_array_ref (gfc_se * se, gfc_array_ref * ar, gfc_expr *expr,
@@ -3608,11 +3661,15 @@ gfc_conv_array_ref (gfc_se * se, gfc_array_ref * ar, gfc_expr *expr,
tree tmp;
tree stride;
tree decl = NULL_TREE;
+ tree cooked_decl = NULL_TREE;
+ tree vptr = se->class_vptr;
gfc_se indexse;
- gfc_se tmpse;
gfc_symbol * sym = expr->symtree->n.sym;
char *var_name = NULL;
+ tree aref = NULL_TREE;
+ tree atype = NULL_TREE;
+ /* Handle coarrays. */
if (ar->dimen == 0)
{
gcc_assert (ar->codimen || sym->attr.select_rank_temporary
@@ -3672,11 +3729,147 @@ gfc_conv_array_ref (gfc_se * se, gfc_array_ref * ar, gfc_expr *expr,
}
}
- cst_offset = offset = gfc_index_zero_node;
- add_to_offset (&cst_offset, &offset, gfc_conv_array_offset (se->expr));
+ /* Per comments above, DECL is not always a declaration. It may be
+ either a variable, indirect variable reference, or component
+ reference. It may have array or pointer type, or it may be a
+ descriptor with RECORD_TYPE. */
+ decl = se->expr;
+
+ /* A pointer array component can be detected from its field decl. Fix
+ the descriptor, mark the resulting variable decl and store it in
+ COOKED_DECL to pass to gfc_build_array_ref. */
+ if (get_CFI_desc (sym, expr, &cooked_decl, ar))
+ cooked_decl = build_fold_indirect_ref_loc (input_location, cooked_decl);
+ if (!expr->ts.deferred && !sym->attr.codimension
+ && is_pointer_array (se->expr))
+ {
+ if (TREE_CODE (se->expr) == COMPONENT_REF)
+ cooked_decl = se->expr;
+ else if (TREE_CODE (se->expr) == INDIRECT_REF)
+ cooked_decl = TREE_OPERAND (se->expr, 0);
+ else
+ cooked_decl = se->expr;
+ }
+ else if (expr->ts.deferred
+ || (sym->ts.type == BT_CHARACTER
+ && sym->attr.select_type_temporary))
+ {
+ if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (se->expr)))
+ {
+ cooked_decl = se->expr;
+ if (TREE_CODE (cooked_decl) == INDIRECT_REF)
+ cooked_decl = TREE_OPERAND (cooked_decl, 0);
+ }
+ else
+ cooked_decl = sym->backend_decl;
+ }
+ else if (sym->ts.type == BT_CLASS)
+ {
+ cooked_decl = NULL_TREE;
+ }
+
+ /* Find the base of the array; this normally has ARRAY_TYPE. */
+ tree base = build_fold_indirect_ref_loc (input_location,
+ gfc_conv_array_data (se->expr));
+ tree type = TREE_TYPE (base);
+
+ /* Handle special cases, copied from gfc_build_array_ref. After we get
+ through this, we know TYPE definitely is an ARRAY_TYPE. */
+ if (GFC_ARRAY_TYPE_P (type) && GFC_TYPE_ARRAY_RANK (type) == 0)
+ {
+ gcc_assert (GFC_TYPE_ARRAY_CORANK (type) > 0);
+ se->expr = fold_convert (TYPE_MAIN_VARIANT (type), base);
+ return;
+ }
+ if (TREE_CODE (type) != ARRAY_TYPE)
+ {
+ gcc_assert (cooked_decl == NULL_TREE);
+ se->expr = base;
+ return;
+ }
- /* Calculate the offsets from all the dimensions. Make sure to associate
- the final offset so that we form a chain of loop invariant summands. */
+ /* Check for cases where we cannot delinearize. */
+
+ bool delinearize = flag_delinearize_aref;
+
+ /* There is no point in trying to delinearize 1-dimensional arrays. */
+ if (ar->dimen == 1)
+ delinearize = false;
+
+ if (delinearize
+ && (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (se->expr))
+ || (DECL_P (se->expr)
+ && DECL_LANG_SPECIFIC (se->expr)
+ && GFC_DECL_SAVED_DESCRIPTOR (se->expr))))
+ {
+ /* Descriptor arrays that may not be contiguous cannot
+ be delinearized without using the stride in the descriptor,
+ which generally involves introducing a division operation.
+ That's unlikely to produce optimal code, so avoid doing it. */
+ tree desc = se->expr;
+ if (!GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (se->expr)))
+ desc = GFC_DECL_SAVED_DESCRIPTOR (se->expr);
+ tree tmptype = TREE_TYPE (desc);
+ if (POINTER_TYPE_P (tmptype))
+ tmptype = TREE_TYPE (tmptype);
+ enum gfc_array_kind akind = GFC_TYPE_ARRAY_AKIND (tmptype);
+ if (akind != GFC_ARRAY_ASSUMED_SHAPE_CONT
+ && akind != GFC_ARRAY_ASSUMED_RANK_CONT
+ && akind != GFC_ARRAY_ALLOCATABLE
+ && akind != GFC_ARRAY_POINTER_CONT)
+ delinearize = false;
+ }
+
+ /* See gfc_build_array_ref in trans.c. If we have a cooked_decl or
+ vptr, then we most likely have to do pointer arithmetic using a
+ linearized array offset. */
+ if (delinearize && cooked_decl)
+ delinearize = false;
+ else if (delinearize && get_class_array_vptr (se->expr, vptr))
+ delinearize = false;
+
+ if (!delinearize)
+ {
+ /* Initialize the offset from the array descriptor. This accounts
+ for the array base being something other than zero. */
+ cst_offset = offset = gfc_index_zero_node;
+ add_to_offset (&cst_offset, &offset, gfc_conv_array_offset (decl));
+ }
+ else
+ {
+ /* If we are delinearizing, build up the nested array type using the
+ dimension information we have for each rank. */
+ atype = TREE_TYPE (type);
+ for (n = 0; n < ar->dimen; n++)
+ {
+ /* We're working from the outermost nested array reference inward
+ in this step. ATYPE is the element type for the access in
+ this rank; build the new array type based on the bounds
+ information and store it back into ATYPE for the next rank's
+ processing. */
+ tree lbound = get_array_lbound (decl, n, sym, ar, se);
+ tree ubound = get_array_ubound (decl, n, sym, ar, se);
+ tree dimen = build_range_type (TREE_TYPE (lbound),
+ lbound, ubound);
+ atype = build_array_type (atype, dimen);
+
+ /* Emit a DECL_EXPR for the array type so the gimplification of
+ its type sizes works correctly. */
+ if (! TYPE_NAME (atype))
+ TYPE_NAME (atype) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
+ NULL_TREE, atype);
+ gfc_add_expr_to_block (&se->pre,
+ build1 (DECL_EXPR, atype,
+ TYPE_NAME (atype)));
+ }
+
+ /* Cast base to the innermost array type. */
+ if (DECL_P (base))
+ TREE_ADDRESSABLE (base) = 1;
+ aref = build1 (NOP_EXPR, atype, base);
+ }
+
+ /* Process indices in reverse order. */
for (n = ar->dimen - 1; n >= 0; n--)
{
/* Calculate the index for this dimension. */
@@ -3694,16 +3887,7 @@ gfc_conv_array_ref (gfc_se * se, gfc_array_ref * ar, gfc_expr *expr,
indexse.expr = save_expr (indexse.expr);
/* Lower bound. */
- tmp = gfc_conv_array_lbound (se->expr, n);
- if (sym->attr.temporary)
- {
- gfc_init_se (&tmpse, se);
- gfc_conv_expr_type (&tmpse, ar->as->lower[n],
- gfc_array_index_type);
- gfc_add_block_to_block (&se->pre, &tmpse.pre);
- tmp = tmpse.expr;
- }
-
+ tmp = get_array_lbound (decl, n, sym, ar, se);
cond = fold_build2_loc (input_location, LT_EXPR, logical_type_node,
indexse.expr, tmp);
msg = xasprintf ("Index '%%ld' of dimension %d of array '%s' "
@@ -3718,16 +3902,7 @@ gfc_conv_array_ref (gfc_se * se, gfc_array_ref * ar, gfc_expr *expr,
arrays. */
if (n < ar->dimen - 1 || ar->as->type != AS_ASSUMED_SIZE)
{
- tmp = gfc_conv_array_ubound (se->expr, n);
- if (sym->attr.temporary)
- {
- gfc_init_se (&tmpse, se);
- gfc_conv_expr_type (&tmpse, ar->as->upper[n],
- gfc_array_index_type);
- gfc_add_block_to_block (&se->pre, &tmpse.pre);
- tmp = tmpse.expr;
- }
-
+ tmp = get_array_ubound (decl, n, sym, ar, se);
cond = fold_build2_loc (input_location, GT_EXPR,
logical_type_node, indexse.expr, tmp);
msg = xasprintf ("Index '%%ld' of dimension %d of array '%s' "
@@ -3740,51 +3915,41 @@ gfc_conv_array_ref (gfc_se * se, gfc_array_ref * ar, gfc_expr *expr,
}
}
- /* Multiply the index by the stride. */
- stride = gfc_conv_array_stride (se->expr, n);
- tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
- indexse.expr, stride);
-
- /* And add it to the total. */
- add_to_offset (&cst_offset, &offset, tmp);
- }
-
- if (!integer_zerop (cst_offset))
- offset = fold_build2_loc (input_location, PLUS_EXPR,
- gfc_array_index_type, offset, cst_offset);
+ if (!delinearize)
+ {
+ /* Multiply the index by the stride. */
+ stride = gfc_conv_array_stride (decl, n);
+ tmp = fold_build2_loc (input_location, MULT_EXPR,
+ gfc_array_index_type,
+ indexse.expr, stride);
- /* A pointer array component can be detected from its field decl. Fix
- the descriptor, mark the resulting variable decl and pass it to
- build_array_ref. */
- if (get_CFI_desc (sym, expr, &decl, ar))
- decl = build_fold_indirect_ref_loc (input_location, decl);
- if (!expr->ts.deferred && !sym->attr.codimension
- && is_pointer_array (se->expr))
- {
- if (TREE_CODE (se->expr) == COMPONENT_REF)
- decl = se->expr;
- else if (TREE_CODE (se->expr) == INDIRECT_REF)
- decl = TREE_OPERAND (se->expr, 0);
+ /* And add it to the total. */
+ add_to_offset (&cst_offset, &offset, tmp);
+ }
else
- decl = se->expr;
- }
- else if (expr->ts.deferred
- || (sym->ts.type == BT_CHARACTER
- && sym->attr.select_type_temporary))
- {
- if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (se->expr)))
{
- decl = se->expr;
- if (TREE_CODE (decl) == INDIRECT_REF)
- decl = TREE_OPERAND (decl, 0);
+ /* Peel off a layer of array nesting from ATYPE to
+ to get the result type of the new ARRAY_REF. */
+ atype = TREE_TYPE (atype);
+ aref = build4 (ARRAY_REF, atype, aref, indexse.expr,
+ NULL_TREE, NULL_TREE);
}
- else
- decl = sym->backend_decl;
}
- else if (sym->ts.type == BT_CLASS)
- decl = NULL_TREE;
- se->expr = build_array_ref (se->expr, offset, decl, se->class_vptr);
+ if (!delinearize)
+ {
+ /* Build a linearized array reference using the offset from all
+ dimensions. */
+ if (!integer_zerop (cst_offset))
+ offset = fold_build2_loc (input_location, PLUS_EXPR,
+ gfc_array_index_type, offset, cst_offset);
+ se->class_vptr = vptr;
+ vptr = get_class_array_vptr (se->expr, vptr);
+ se->expr = gfc_build_array_ref (base, offset, cooked_decl, vptr);
+ }
+ else
+ /* Return the outermost ARRAY_REF we already built. */
+ se->expr = aref;
}
diff --git a/gcc/testsuite/gfortran.dg/assumed_type_2.f90 b/gcc/testsuite/gfortran.dg/assumed_type_2.f90
index 5d3cd7e..07be87e 100644
--- a/gcc/testsuite/gfortran.dg/assumed_type_2.f90
+++ b/gcc/testsuite/gfortran.dg/assumed_type_2.f90
@@ -147,12 +147,12 @@ end
! { dg-final { scan-tree-dump-times "sub_scalar .&scalar_int," 1 "original" } }
! { dg-final { scan-tree-dump-times "sub_scalar .&scalar_t1," 1 "original" } }
-! { dg-final { scan-tree-dump-times "sub_scalar .&array_int.1.," 1 "original" } }
+! { dg-final { scan-tree-dump-times "sub_scalar .&.*array_int" 1 "original" } }
! { dg-final { scan-tree-dump-times "sub_scalar .&scalar_t1," 1 "original" } }
-! { dg-final { scan-tree-dump-times "sub_scalar .&\\(.\\(real.kind=4..0:. . restrict\\) array_real_alloc.data" 1 "original" } }
+! { dg-final { scan-tree-dump-times "sub_scalar .&.*real.kind=4..0.*restrict.*array_real_alloc.data" 1 "original" } }
! { dg-final { scan-tree-dump-times "sub_scalar .\\(character.kind=1..1:1. .\\) .array_char_ptr.data" 1 "original" } }
-! { dg-final { scan-tree-dump-times "sub_scalar .&\\(.\\(struct t2.0:. . restrict\\) array_t2_alloc.data" 1 "original" } }
+! { dg-final { scan-tree-dump-times "sub_scalar .&.*struct t2.0:..*restrict.*array_t2_alloc.data" 1 "original" } }
! { dg-final { scan-tree-dump-times "sub_scalar .\\(struct t3 .\\) .array_t3_ptr.data" 1 "original" } }
! { dg-final { scan-tree-dump-times "sub_scalar .\\(struct t1 .\\) array_class_t1_alloc._data.data" 1 "original" } }
! { dg-final { scan-tree-dump-times "sub_scalar .\\(struct t1 .\\) \\(array_class_t1_ptr._data.dat" 1 "original" } }
diff --git a/gcc/testsuite/gfortran.dg/graphite/block-3.f90 b/gcc/testsuite/gfortran.dg/graphite/block-3.f90
index 452de73..60c7952 100644
--- a/gcc/testsuite/gfortran.dg/graphite/block-3.f90
+++ b/gcc/testsuite/gfortran.dg/graphite/block-3.f90
@@ -12,6 +12,5 @@ enddo
end subroutine matrix_multiply
-! { dg-final { scan-tree-dump-times "number of SCoPs: 1" 1 "graphite" { xfail *-*-* } } }
! { dg-final { scan-tree-dump-times "will be loop blocked" 1 "graphite" { xfail *-*-* } } }
diff --git a/gcc/testsuite/gfortran.dg/graphite/block-4.f90 b/gcc/testsuite/gfortran.dg/graphite/block-4.f90
index 42af5b6..1bc7a1b 100644
--- a/gcc/testsuite/gfortran.dg/graphite/block-4.f90
+++ b/gcc/testsuite/gfortran.dg/graphite/block-4.f90
@@ -15,6 +15,5 @@ enddo
end subroutine matrix_multiply
-! { dg-final { scan-tree-dump-times "number of SCoPs: 1" 1 "graphite" { xfail *-*-* } } }
! { dg-final { scan-tree-dump-times "will be loop blocked" 1 "graphite" { xfail *-*-* } } }
diff --git a/gcc/testsuite/gfortran.dg/inline_matmul_24.f90 b/gcc/testsuite/gfortran.dg/inline_matmul_24.f90
index 3168d5f..8d84f3c 100644
--- a/gcc/testsuite/gfortran.dg/inline_matmul_24.f90
+++ b/gcc/testsuite/gfortran.dg/inline_matmul_24.f90
@@ -39,4 +39,4 @@ program testMATMUL
call abort()
end if
end program testMATMUL
-! { dg-final { scan-tree-dump-times "gamma5\\\[__var_1_do \\* 4 \\+ __var_2_do\\\]|gamma5\\\[NON_LVALUE_EXPR <__var_1_do> \\* 4 \\+ NON_LVALUE_EXPR <__var_2_do>\\\]" 1 "original" } }
+! { dg-final { scan-tree-dump-times "gamma5.*\\\[NON_LVALUE_EXPR <__var_1_do>\\\]\\\[NON_LVALUE_EXPR <__var_2_do>\\\]" 1 "original" } }
diff --git a/gcc/testsuite/gfortran.dg/no_arg_check_2.f90 b/gcc/testsuite/gfortran.dg/no_arg_check_2.f90
index 3570b97..0900dd8 100644
--- a/gcc/testsuite/gfortran.dg/no_arg_check_2.f90
+++ b/gcc/testsuite/gfortran.dg/no_arg_check_2.f90
@@ -129,12 +129,12 @@ end
! { dg-final { scan-tree-dump-times "sub_scalar .&scalar_int," 1 "original" } }
! { dg-final { scan-tree-dump-times "sub_scalar .&scalar_t1," 1 "original" } }
-! { dg-final { scan-tree-dump-times "sub_scalar .&array_int.1.," 1 "original" } }
+! { dg-final { scan-tree-dump-times "sub_scalar .&.*array_int" 1 "original" } }
! { dg-final { scan-tree-dump-times "sub_scalar .&scalar_t1," 1 "original" } }
-! { dg-final { scan-tree-dump-times "sub_scalar .&\\(.\\(real.kind=4..0:. . restrict\\) array_real_alloc.data" 1 "original" } }
+! { dg-final { scan-tree-dump-times "sub_scalar .&.*real.kind=4..0.*restrict.*array_real_alloc.data" 1 "original" } }
! { dg-final { scan-tree-dump-times "sub_scalar .\\(character.kind=1..1:1. .\\) .array_char_ptr.data" 1 "original" } }
-! { dg-final { scan-tree-dump-times "sub_scalar .&\\(.\\(struct t2.0:. . restrict\\) array_t2_alloc.data" 1 "original" } }
+! { dg-final { scan-tree-dump-times "sub_scalar .&.*struct t2.0:..*restrict.*array_t2_alloc.data" 1 "original" } }
! { dg-final { scan-tree-dump-times "sub_scalar .\\(struct t3 .\\) .array_t3_ptr.data" 1 "original" } }
! { dg-final { scan-tree-dump-times "sub_scalar .\\(struct t1 .\\) array_class_t1_alloc._data.data" 1 "original" } }
! { dg-final { scan-tree-dump-times "sub_scalar .\\(struct t1 .\\) \\(array_class_t1_ptr._data.dat" 1 "original" } }
diff --git a/gcc/testsuite/gfortran.dg/pr32921.f b/gcc/testsuite/gfortran.dg/pr32921.f
index 0661208..8534386 100644
--- a/gcc/testsuite/gfortran.dg/pr32921.f
+++ b/gcc/testsuite/gfortran.dg/pr32921.f
@@ -45,4 +45,4 @@
RETURN
END
-! { dg-final { scan-tree-dump-times "stride" 4 "lim2" } }
+! { dg-final { scan-tree-dump-times "ubound" 4 "lim2" } }
diff --git a/gcc/testsuite/gfortran.dg/reassoc_4.f b/gcc/testsuite/gfortran.dg/reassoc_4.f
index fdcb46e..2368b76 100644
--- a/gcc/testsuite/gfortran.dg/reassoc_4.f
+++ b/gcc/testsuite/gfortran.dg/reassoc_4.f
@@ -1,5 +1,5 @@
! { dg-do compile }
-! { dg-options "-O3 -ffast-math -fdump-tree-reassoc1 --param max-completely-peeled-insns=200" }
+! { dg-options "-O3 -ffast-math -fdump-tree-reassoc1 --param max-completely-peeled-insns=200 --param delinearize=0" }
subroutine anisonl(w,vo,anisox,s,ii1,jj1,weight)
integer ii1,jj1,i1,iii1,j1,jjj1,k1,l1,m1,n1
real*8 w(3,3),vo(3,3),anisox(3,3,3,3),s(60,60),weight