Hello,

On Mon, 19 Sep 2022, Richard Biener via Gcc-patches wrote:

> > but I guess it's good we do the right thing for correctness sake, and
> > if it ever gets used by someone else.
> >
> > >
> > > That said, 'set_nonnegative' could be interpreted to be without
> > > NaNs?
> >
> > Sounds good to me.  How's this?
> 
> Hmm, I merely had lots of questions above so I think to answer them
> we at least should document what 'set_nonnegative' implies in the
> abstract vrange class.
> 
> It's probably safer to keep NaN in.  For example unfolded copysign (x, 1.)
> will return true for x == -NaN but the result will be a NaN.

FWIW, in IEEE, 'abs' (like 'copy, 'copysign' and 'negate') are not 
arithmetic, they are quiet-computational.  Hence they don't rise 
anything, not even for sNaNs; they copy the input bits and appropriately 
modify the bit pattern according to the specification (i.e. fiddle the 
sign bit).

That also means that a predicate like negative_p(x) that would be 
implemented ala

  copysign(1.0, x) < 0.0

deal with NaNs just fine and is required to correctly capture the sign of 
'x'.  If frange::set_nonnegative is supposed to be used in such contexts 
(and I think it's a good idea if that were the case), then set_nonnegative 
does _not_ imply no-NaN.

In particular I would assume that, given an VAYRING frange FR, that 
FR.set_nonnegative() would result in an frange {[+0.0,+inf],+nan} .


Ciao,
Michael.

Reply via email to