On 12/5/22 10:33, Jakub Jelinek wrote:
Hi!

On Mon, Dec 05, 2022 at 02:29:36PM +0100, Aldy Hernandez wrote:
So like this for multiplication op1/2_range if it passes bootstrap/regtest?
For division I'll need to go to a drawing board...
Sure, looks good to me.
Ulrich just filed PR107972, so in the light of that PR the following patch
attempts to do that differently.

Is this also ok if it passes bootstrap/regtest?


Id actually prefer to avoid passing the tree code around... we're trying to avoid that sort of thing even though Aldy temporarily introduced them to range-ops. Hes suppose to remove that next stage 1 :-P   Ideally anything "special" is locally contained to the specific routine.

It looks like the only time we actually do anything different is for divide op2_range?   the divide op1_range seems to still call frange_drop_infs() under the same conditions..

In which case, maybe we can just change op2_range to contain all the special casing.. frange_drop_infs doesnt seem overly complicated, so just specialize it?  ie for divide op2_range do something like this instead of the call?:

if (!ret)
  return false;
if (r.known_isnan () || lhs.known_isnan () || r.undefined_p ())
  r.set_varying (type);
else if (!lhs.maybe_isnan ())
  {
    r.clear_nan();
    if (!contains_zero_p (lhs_lb, lhs_ub))
      frange_drop_infs (r, type);
  }
else
  r.update_nan ();
return true;


or whatever the sequence precisely works out to.

Andrew


As for testcase, I've tried both attached testcases, but unfortunately it
seems that in neither of the cases we actually figure out that res range
is finite (or for last function non-zero ordered).  So there is further
work needed on that.

2022-12-05  Jakub Jelinek  <ja...@redhat.com>

        PR tree-optimization/107972
        * range-op-float.cc (frange_drop_infs): New function.
        (float_binary_op_range_finish): Add OP argument.  If OP is not
        RDIV_EXPR and lhs is finite, r must be finite too.
        (foperator_plus::op1_range, foperator_minus::op1_range,
        foperator_minus::op2_range, foperator_mult::op1_range): Pass
        operation code to float_binary_op_range_finish.
        (foperator_div::op1_range): Pass RDIV_EXPR to
        float_binary_op_range_finish.  If lhs is finite, r must be finite
        too.
        (foperator_div::op2_range): Pass RDIV_EXPR to
        float_binary_op_range_finish.  If lhs is not NAN nor zero, r must
        be finite.

--- gcc/range-op-float.cc.jj    2022-12-05 11:17:34.900573272 +0100
+++ gcc/range-op-float.cc       2022-12-05 16:13:54.414845672 +0100
@@ -330,6 +330,18 @@ frange_drop_ninf (frange &r, tree type)
    r.intersect (tmp);
  }
+// Crop R to [MIN, MAX] where MAX is the maximum representable number
+// for TYPE and MIN the minimum representable number for TYPE.
+
+static inline void
+frange_drop_infs (frange &r, tree type)
+{
+  REAL_VALUE_TYPE max = real_max_representable (type);
+  REAL_VALUE_TYPE min = real_min_representable (type);
+  frange tmp (type, min, max);
+  r.intersect (tmp);
+}
+
  // If zero is in R, make sure both -0.0 and +0.0 are in the range.
static inline void
@@ -1883,7 +1895,7 @@ foperator_unordered_equal::op1_range (fr
static bool
  float_binary_op_range_finish (bool ret, frange &r, tree type,
-                             const frange &lhs)
+                             const frange &lhs, enum tree_code op)
  {
    if (!ret)
      return false;
@@ -1904,7 +1916,16 @@ float_binary_op_range_finish (bool ret,
    // If lhs isn't NAN, then neither operand could be NAN,
    // even if the reverse operation does introduce a maybe_nan.
    if (!lhs.maybe_isnan ())
-    r.clear_nan ();
+    {
+      r.clear_nan ();
+      if (op != RDIV_EXPR
+         && !real_isinf (&lhs.lower_bound ())
+         && !real_isinf (&lhs.upper_bound ()))
+       // For reverse + or - or *, if result is finite, then r must
+       // be finite too, as X + INF or X - INF or X * INF is always
+       // +-INF or NAN.  For division handle it in the caller.
+       frange_drop_infs (r, type);
+    }
    // If lhs is a maybe or known NAN, the operand could be
    // NAN.
    else
@@ -2020,7 +2041,7 @@ public:
      if (!minus)
        return false;
      return float_binary_op_range_finish (minus.fold_range (r, type, lhs, op2),
-                                        r, type, lhs);
+                                        r, type, lhs, PLUS_EXPR);
    }
    virtual bool op2_range (frange &r, tree type,
                          const frange &lhs,
@@ -2067,7 +2088,7 @@ public:
        return false;
      return float_binary_op_range_finish (fop_plus.fold_range (r, type, lhs,
                                                              op2),
-                                        r, type, lhs);
+                                        r, type, lhs, MINUS_EXPR);
    }
    virtual bool op2_range (frange &r, tree type,
                          const frange &lhs,
@@ -2077,7 +2098,7 @@ public:
      if (lhs.undefined_p ())
        return false;
      return float_binary_op_range_finish (fold_range (r, type, op1, lhs),
-                                        r, type, lhs);
+                                        r, type, lhs, MINUS_EXPR);
    }
  private:
    void rv_fold (REAL_VALUE_TYPE &lb, REAL_VALUE_TYPE &ub, bool &maybe_nan,
@@ -2166,7 +2187,7 @@ public:
      // or if lhs must be zero and op2 doesn't include zero, it would be
      // UNDEFINED, while rdiv.fold_range computes a zero or singleton INF
      // range.  Those are supersets of UNDEFINED, so let's keep that way.
-    return float_binary_op_range_finish (ret, r, type, lhs);
+    return float_binary_op_range_finish (ret, r, type, lhs, MULT_EXPR);
    }
    virtual bool op2_range (frange &r, tree type,
                          const frange &lhs,
@@ -2313,7 +2334,12 @@ public:
        zero_to_inf_range (lb, ub, signbit_known);
        r.set (type, lb, ub);
        }
-    return float_binary_op_range_finish (ret, r, type, lhs);
+    // If lhs must be finite (can't be +-INF nor NAN), then op1 must be
+    // finite too - +-INF / anything is either +-INF or NAN (NAN if op2 is
+    // +-INF or NAN).
+    if (!real_isinf (&lhs_lb) && !real_isinf (&lhs_ub) && !lhs.maybe_isnan ())
+      frange_drop_infs (r, type);
+    return float_binary_op_range_finish (ret, r, type, lhs, RDIV_EXPR);
    }
    virtual bool op2_range (frange &r, tree type,
                          const frange &lhs,
@@ -2341,7 +2367,11 @@ public:
        zero_to_inf_range (lb, ub, signbit_known);
        r.set (type, lb, ub);
        }
-    return float_binary_op_range_finish (ret, r, type, lhs);
+    // If lhs can't be zero nor NAN, then op2 must be finite - anything / +-INF
+    // is either +-0 or NAN (NAN if op1 is +-INF or NAN).
+    if (!contains_zero_p (lhs_lb, lhs_ub) && !lhs.maybe_isnan ())
+      frange_drop_infs (r, type);
+    return float_binary_op_range_finish (ret, r, type, lhs, RDIV_EXPR);
    }
  private:
    void rv_fold (REAL_VALUE_TYPE &lb, REAL_VALUE_TYPE &ub, bool &maybe_nan,


        Jakub

Reply via email to