On Mon, Jul 28, 2025 at 10:03 AM Luc Grosheintz <luc.groshei...@gmail.com> wrote:
> > > On 7/28/25 08:02, Tomasz Kaminski wrote: > > On Sun, Jul 27, 2025 at 2:47 PM Luc Grosheintz <luc.groshei...@gmail.com > > > > wrote: > > > >> The methods layout_{left,right}::mapping::stride are defined > >> as > >> > >> \prod_{i = 0}^r E[i] > >> \prod_{i = r+1}^n E[i] > >> > >> This is computed as the product of a pre-comupted static product and the > >> product of the required dynamic extents. > >> > >> Disassembly shows that even for low-rank extents, i.e. rank == 1 and > >> rank == 2, with at least one dynamic extent, the generated code loads > >> two values; and then runs the loop over at most one element, e.g. > >> > >> 220: 48 8b 0c f5 00 00 00 mov rcx,QWORD PTR [rsi*8+0x0] > >> 227: 00 > >> 228: 48 8b 04 f5 00 00 00 mov rax,QWORD PTR [rsi*8+0x0] > >> 22f: 00 > >> 230: 48 c1 e1 02 shl rcx,0x2 > >> 234: 74 1a je 250 <stride_left_d5+0x30> > >> 236: 48 01 f9 add rcx,rdi > >> 239: 0f 1f 80 00 00 00 00 nop DWORD PTR [rax+0x0] > >> 240: 48 63 17 movsxd rdx,DWORD PTR [rdi] > >> 243: 48 83 c7 04 add rdi,0x4 > >> 247: 48 0f af c2 imul rax,rdx > >> 24b: 48 39 f9 cmp rcx,rdi > >> 24e: 75 f0 jne 240 <stride_left_d5+0x20> > >> 250: c3 ret > >> > >> If there's no dynamic extents, it simply loads the precomputed product > >> of static extents. > >> > >> For rank == 1 the answer is constant `1`; for rank == 2 it's either 1 or > >> extents.extent(k), with k == 0 for layout_left and k == 1 for > >> layout_right. > >> > >> Consider, > >> > >> using Ed = std::extents<int, dyn>; > >> int stride_left_d(const std::layout_left::mapping<Ed>& m, size_t r) > >> { return m.stride(r); } > >> > >> using E3d = std::extents<int, 3, dyn>; > >> int stride_left_3d(const std::layout_left::mapping<E3d>& m, size_t r) > >> { return m.stride(r); } > >> > >> using Ed5 = std::extents<int, dyn, 5>; > >> int stride_left_d5(const std::layout_left::mapping<Ed5>& m, size_t r) > >> { return m.stride(r); } > >> > >> The optimized code for these three cases is: > >> > >> 0000000000000060 <stride_left_d>: > >> 60: b8 01 00 00 00 mov eax,0x1 > >> 65: c3 ret > >> > >> 0000000000000090 <stride_left_3d>: > >> 90: 48 83 fe 01 cmp rsi,0x1 > >> 94: 19 c0 sbb eax,eax > >> 96: 83 e0 fe and eax,0xfffffffe > >> 99: 83 c0 03 add eax,0x3 > >> 9c: c3 ret > >> > >> 00000000000000a0 <stride_left_d5>: > >> a0: b8 01 00 00 00 mov eax,0x1 > >> a5: 48 85 f6 test rsi,rsi > >> a8: 74 02 je ac <stride_left_d5+0xc> > >> aa: 8b 07 mov eax,DWORD PTR [rdi] > >> ac: c3 ret > >> > >> For rank == 1 it simply returns 1 (as expected). For rank == 2, it > >> either implements a branchless formula, or conditionally loads one > >> value. In all cases involving a dynamic extent this seems like it's > >> always doing clearly less work, both in terms of computation and loads. > >> > >> For rank == 2, it trades loading one value for a branchless sequence of > >> four instructions that don't require loading any values. > >> > > I will put this optimization into the __fwd_prod and __rev_pord > functions, > > so it will be applied for all uses. This will also avoid us creating this > > caching > > tables for such small ranks. > > The problem is that we don't have the same amount of information in > the stride and __fwd_prod. The valid values for __r are 1, ..., rank; > for __fwd_prod it's inclusive, while in stride it's exclusive. Therefore, > we can do the optimization with one comparison less in stride than in > __fwd_prod. > Make sense, and I am OK having this optimization there. However, out of curiosity, if we put always_inline on the __fwd_prod, wouldn't compiler be able to eliminate __rank == __i. Also once we have separate call to __size, we could put assertions (just as a comment) that for __fwd_prod and __rev_prod __r is required to be smaller than rank(). > > I purposefully checked mdspan::size (part of the previous commit); and > on optimized builds it fully unrolls the loop and does everything > automatically, meaning it doesn't need help and we're not repeating > the same optimization several times. > > As for avoiding the tables for small ranks, we can refactor _RevProd > as follows: > > template<size_t... _Extents> > struct _RevProd > { > size_t _S_value(size_t i) > { return _S_data[i]; } > > private: > array _S_data = consteval ...; > } > > and use partial specialization to eliminate _S_data. > > > > >> > >> libstdc++-v3/ChangeLog: > >> > >> * include/std/mdspan (layout_left::mapping::stride): Optimize > >> for rank <= 2. > >> (layout_right::mapping::stride): Ditto. > >> > >> Signed-off-by: Luc Grosheintz <luc.groshei...@gmail.com> > >> --- > >> libstdc++-v3/include/std/mdspan | 14 ++++++++++++-- > >> 1 file changed, 12 insertions(+), 2 deletions(-) > >> > >> diff --git a/libstdc++-v3/include/std/mdspan > >> b/libstdc++-v3/include/std/mdspan > >> index 06ccf3e3827..f288af96cdb 100644 > >> --- a/libstdc++-v3/include/std/mdspan > >> +++ b/libstdc++-v3/include/std/mdspan > >> @@ -652,7 +652,12 @@ _GLIBCXX_BEGIN_NAMESPACE_VERSION > >> requires (extents_type::rank() > 0) > >> { > >> __glibcxx_assert(__i < extents_type::rank()); > >> - return __mdspan::__fwd_prod(_M_extents, __i); > >> + if constexpr (extents_type::rank() == 1) > >> + return 1; > >> + else if constexpr (extents_type::rank() == 2) > >> + return __i == 0 ? 1 : _M_extents.extent(0); > >> + else > >> + return __mdspan::__fwd_prod(_M_extents, __i); > >> } > >> > >> template<typename _OExtents> > >> @@ -797,7 +802,12 @@ _GLIBCXX_BEGIN_NAMESPACE_VERSION > >> requires (extents_type::rank() > 0) > >> { > >> __glibcxx_assert(__i < extents_type::rank()); > >> - return __mdspan::__rev_prod(_M_extents, __i); > >> + if constexpr (extents_type::rank() == 1) > >> + return 1; > >> + else if constexpr (extents_type::rank() == 2) > >> + return __i == 0 ? _M_extents.extent(1) : 1; > >> + else > >> + return __mdspan::__rev_prod(_M_extents, __i); > >> } > >> > >> template<typename _OExtents> > >> -- > >> 2.50.0 > >> > >> > > > >