On 10/26/2012 10:41 AM, Paolo Carlini wrote:
On 10/25/2012 10:15 PM, François Dumont wrote:
Here is the patch to apply the same modification applied to unordered_set and unordered_multiset. It also use default implementation for unordered_set/unordered_multiset copy/move constructor/assignment operators.
Looks good to me, thanks! Before committing, please double check the various comments vs the various observations Jon sent over the last time.

Thanks again,
Paolo.

Attached patch applied.

2012-10-27  François Dumont  <fdum...@gcc.gnu.org>

    * include/bits/unordered_map.h (unordered_map<>): Prefer
    aggreagation to inheritance with _Hashtable.
    (unordered_multimap<>): Likewise.
    * include/bits/unordered_set.h
    (unordered_set<>(const unordered_set&)):  Use default
    implementation.
    (unordered_set<>(unordered_set&&)): Likewise.
    (unordered_set<>::operator=(const unordered_set&)): Likewise.
    (unordered_set<>::operator=(unordered_set&&)): Likewise.
    (unordered_multiset<>(const unordered_multiset&)): Likewise.
    (unordered_multiset<>(unordered_multiset&&)): Likewise.
    (unordered_multiset<>::operator=(const unordered_multiset&)):
    Likewise.
(unordered_multiset<>::operator=(unordered_multiset&&)): Likewise.
    * include/debug/unordered_map (operator==): Adapt.
    * include/profile/unordered_map (operator==): Adapt.

I think I did consider all Jonathan remarks which was mostly to use as much as possible default implementations so benefit from noexcept qualification.

François

Index: include/profile/unordered_map
===================================================================
--- include/profile/unordered_map	(revision 192694)
+++ include/profile/unordered_map	(working copy)
@@ -330,7 +330,7 @@
     inline bool
     operator==(const unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>& __x,
 	       const unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>& __y)
-    { return __x._M_equal(__y); }
+    { return static_cast<const _GLIBCXX_STD_BASE&>(__x) == __y; }
 
   template<typename _Key, typename _Tp, typename _Hash,
 	   typename _Pred, typename _Alloc>
@@ -599,7 +599,7 @@
     inline bool
     operator==(const unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>& __x,
 	       const unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>& __y)
-    { return __x._M_equal(__y); }
+    { return static_cast<const _GLIBCXX_STD_BASE&>(__x) == __y; }
 
   template<typename _Key, typename _Tp, typename _Hash,
 	   typename _Pred, typename _Alloc>
Index: include/debug/unordered_map
===================================================================
--- include/debug/unordered_map	(revision 192694)
+++ include/debug/unordered_map	(working copy)
@@ -482,7 +482,7 @@
     inline bool
     operator==(const unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>& __x,
 	       const unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>& __y)
-    { return __x._M_equal(__y); }
+    { return __x._M_base() == __y._M_base(); }
 
   template<typename _Key, typename _Tp, typename _Hash,
 	   typename _Pred, typename _Alloc>
@@ -929,7 +929,7 @@
     inline bool
     operator==(const unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>& __x,
 	       const unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>& __y)
-    { return __x._M_equal(__y); }
+    { return __x._M_base() == __y._M_base(); }
 
   template<typename _Key, typename _Tp, typename _Hash,
 	   typename _Pred, typename _Alloc>
Index: include/bits/unordered_map.h
===================================================================
--- include/bits/unordered_map.h	(revision 192694)
+++ include/bits/unordered_map.h	(working copy)
@@ -95,41 +95,654 @@
 	   class _Pred = std::equal_to<_Key>,
 	   class _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
     class unordered_map
-    : public __umap_hashtable<_Key, _Tp, _Hash, _Pred, _Alloc>
     {
-      typedef __umap_hashtable<_Key, _Tp, _Hash, _Pred, _Alloc>  _Base;
+      typedef __umap_hashtable<_Key, _Tp, _Hash, _Pred, _Alloc>  _Hashtable;
+      _Hashtable _M_h;
 
     public:
-      typedef typename _Base::value_type      value_type;
-      typedef typename _Base::size_type       size_type;
-      typedef typename _Base::hasher          hasher;
-      typedef typename _Base::key_equal       key_equal;
-      typedef typename _Base::allocator_type  allocator_type;
+      // typedefs:
+      //@{
+      /// Public typedefs.
+      typedef typename _Hashtable::key_type	key_type;
+      typedef typename _Hashtable::value_type	value_type;
+      typedef typename _Hashtable::mapped_type	mapped_type;
+      typedef typename _Hashtable::hasher	hasher;
+      typedef typename _Hashtable::key_equal	key_equal;
+      typedef typename _Hashtable::allocator_type allocator_type;
+      //@}
 
+      //@{
+      ///  Iterator-related typedefs.
+      typedef typename allocator_type::pointer		pointer;
+      typedef typename allocator_type::const_pointer	const_pointer;
+      typedef typename allocator_type::reference	reference;
+      typedef typename allocator_type::const_reference	const_reference;
+      typedef typename _Hashtable::iterator		iterator;
+      typedef typename _Hashtable::const_iterator	const_iterator;
+      typedef typename _Hashtable::local_iterator	local_iterator;
+      typedef typename _Hashtable::const_local_iterator	const_local_iterator;
+      typedef typename _Hashtable::size_type		size_type;
+      typedef typename _Hashtable::difference_type	difference_type;
+      //@}
+
+      //construct/destroy/copy
+
+      /**
+       *  @brief  Default constructor creates no elements.
+       *  @param __n  Initial number of buckets.
+       *  @param __hf  A hash functor.
+       *  @param __eql  A key equality functor.
+       *  @param __a  An allocator object.
+       */
       explicit
       unordered_map(size_type __n = 10,
 		    const hasher& __hf = hasher(),
 		    const key_equal& __eql = key_equal(),
 		    const allocator_type& __a = allocator_type())
-      : _Base(__n, __hf, __eql, __a)
+      : _M_h(__n, __hf, __eql, __a)
       { }
 
+      /**
+       *  @brief  Builds an %unordered_map from a range.
+       *  @param  __first  An input iterator.
+       *  @param  __last  An input iterator.
+       *  @param __n  Minimal initial number of buckets.
+       *  @param __hf  A hash functor.
+       *  @param __eql  A key equality functor.
+       *  @param __a  An allocator object.
+       *
+       *  Create an %unordered_map consisting of copies of the elements from
+       *  [__first,__last).  This is linear in N (where N is
+       *  distance(__first,__last)).
+       */
       template<typename _InputIterator>
 	unordered_map(_InputIterator __f, _InputIterator __l,
 		      size_type __n = 0,
 		      const hasher& __hf = hasher(),
 		      const key_equal& __eql = key_equal(),
 		      const allocator_type& __a = allocator_type())
-	: _Base(__f, __l, __n, __hf, __eql, __a)
+	: _M_h(__f, __l, __n, __hf, __eql, __a)
 	{ }
 
+      /// Copy constructor.
+      unordered_map(const unordered_map&) = default;
+
+      /// Move constrcutor.
+      unordered_map(unordered_map&&) = default;
+
+      /**
+       *  @brief  Builds an %unordered_map from an initializer_list.
+       *  @param  __l  An initializer_list.
+       *  @param __n  Minimal initial number of buckets.
+       *  @param __hf  A hash functor.
+       *  @param __eql  A key equality functor.
+       *  @param  __a  An allocator object.
+       *
+       *  Create an %unordered_map consisting of copies of the elements in the
+       *  list. This is linear in N (where N is @a __l.size()).
+       */
       unordered_map(initializer_list<value_type> __l,
 		    size_type __n = 0,
 		    const hasher& __hf = hasher(),
 		    const key_equal& __eql = key_equal(),
 		    const allocator_type& __a = allocator_type())
-      : _Base(__l.begin(), __l.end(), __n, __hf, __eql, __a)
+	: _M_h(__l, __n, __hf, __eql, __a)
       { }
+
+      /// Copy assignment operator.
+      unordered_map&
+      operator=(const unordered_map&) = default;
+
+      /// Move assignment operator.
+      unordered_map&
+      operator=(unordered_map&&) = default;
+
+      /**
+       *  @brief  %Unordered_map list assignment operator.
+       *  @param  __l  An initializer_list.
+       *
+       *  This function fills an %unordered_map with copies of the elements in
+       *  the initializer list @a __l.
+       *
+       *  Note that the assignment completely changes the %unordered_map and
+       *  that the resulting %unordered_map's size is the same as the number
+       *  of elements assigned.  Old data may be lost.
+       */
+      unordered_map&
+      operator=(initializer_list<value_type> __l)
+      {
+	_M_h = __l;
+	return *this;
+      }
+
+      ///  Returns the allocator object with which the %unordered_map was
+      ///  constructed.
+      allocator_type
+      get_allocator() const noexcept
+      { return _M_h.get_allocator(); }
+
+      // size and capacity:
+
+      ///  Returns true if the %unordered_map is empty.
+      bool
+      empty() const noexcept
+      { return _M_h.empty(); }
+
+      ///  Returns the size of the %unordered_map.
+      size_type
+      size() const noexcept
+      { return _M_h.size(); }
+
+      ///  Returns the maximum size of the %unordered_map.
+      size_type
+      max_size() const noexcept
+      { return _M_h.max_size(); }
+
+      // iterators.
+
+      /**
+       *  Returns a read/write iterator that points to the first element in the
+       *  %unordered_map.
+       */
+      iterator
+      begin() noexcept
+      { return _M_h.begin(); }
+
+      //@{
+      /**
+       *  Returns a read-only (constant) iterator that points to the first
+       *  element in the %unordered_map.
+       */
+      const_iterator
+      begin() const noexcept
+      { return _M_h.begin(); }
+
+      const_iterator
+      cbegin() const noexcept
+      { return _M_h.begin(); }
+      //@}
+
+      /**
+       *  Returns a read/write iterator that points one past the last element in
+       *  the %unordered_map.
+       */
+      iterator
+      end() noexcept
+      { return _M_h.end(); }
+
+      //@{
+      /**
+       *  Returns a read-only (constant) iterator that points one past the last
+       *  element in the %unordered_map.
+       */
+      const_iterator
+      end() const noexcept
+      { return _M_h.end(); }
+
+      const_iterator
+      cend() const noexcept
+      { return _M_h.end(); }
+      //@}
+
+      // modifiers.
+
+      /**
+       *  @brief Attempts to build and insert a std::pair into the %unordered_map.
+       *
+       *  @param __args  Arguments used to generate a new pair instance (see
+       *	        std::piecewise_contruct for passing arguments to each
+       *	        part of the pair constructor).
+       *
+       *  @return  A pair, of which the first element is an iterator that points
+       *           to the possibly inserted pair, and the second is a bool that
+       *           is true if the pair was actually inserted.
+       *
+       *  This function attempts to build and insert a (key, value) %pair into
+       *  the %unordered_map.
+       *  An %unordered_map relies on unique keys and thus a %pair is only
+       *  inserted if its first element (the key) is not already present in the
+       *  %unordered_map.
+       *
+       *  Insertion requires amortized constant time.
+       */
+      template<typename... _Args>
+	std::pair<iterator, bool>
+	emplace(_Args&&... __args)
+	{ return _M_h.emplace(std::forward<_Args>(__args)...); }
+
+      /**
+       *  @brief Attempts to build and insert a std::pair into the %unordered_map.
+       *
+       *  @param  __pos  An iterator that serves as a hint as to where the pair
+       *                should be inserted.
+       *  @param  __args  Arguments used to generate a new pair instance (see
+       *	         std::piecewise_contruct for passing arguments to each
+       *	         part of the pair constructor).
+       *  @return An iterator that points to the element with key of the
+       *          std::pair built from @a __args (may or may not be that
+       *          std::pair).
+       *
+       *  This function is not concerned about whether the insertion took place,
+       *  and thus does not return a boolean like the single-argument emplace()
+       *  does.
+       *  Note that the first parameter is only a hint and can potentially
+       *  improve the performance of the insertion process. A bad hint would
+       *  cause no gains in efficiency.
+       *
+       *  See
+       *  http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html
+       *  for more on @a hinting.
+       *
+       *  Insertion requires amortized constant time.
+       */
+      template<typename... _Args>
+	iterator
+	emplace_hint(const_iterator __pos, _Args&&... __args)
+	{ return _M_h.emplace_hint(__pos, std::forward<_Args>(__args)...); }
+
+      //@{
+      /**
+       *  @brief Attempts to insert a std::pair into the %unordered_map.
+
+       *  @param __x Pair to be inserted (see std::make_pair for easy
+       *	     creation of pairs).
+       *
+       *  @return  A pair, of which the first element is an iterator that 
+       *           points to the possibly inserted pair, and the second is 
+       *           a bool that is true if the pair was actually inserted.
+       *
+       *  This function attempts to insert a (key, value) %pair into the
+       *  %unordered_map. An %unordered_map relies on unique keys and thus a
+       *  %pair is only inserted if its first element (the key) is not already
+       *  present in the %unordered_map.
+       *
+       *  Insertion requires amortized constant time.
+       */
+      std::pair<iterator, bool>
+      insert(const value_type& __x)
+      { return _M_h.insert(__x); }
+
+      template<typename _Pair>
+	std::pair<iterator, bool>
+	insert(_Pair&& __x)
+	{ return _M_h.insert(std::move(__x)); }
+      //@}
+
+      //@{
+      /**
+       *  @brief Attempts to insert a std::pair into the %unordered_map.
+       *  @param  __hint  An iterator that serves as a hint as to where the
+       *                 pair should be inserted.
+       *  @param  __x  Pair to be inserted (see std::make_pair for easy creation
+       *               of pairs).
+       *  @return An iterator that points to the element with key of
+       *           @a __x (may or may not be the %pair passed in).
+       *
+       *  This function is not concerned about whether the insertion took place,
+       *  and thus does not return a boolean like the single-argument insert()
+       *  does.  Note that the first parameter is only a hint and can
+       *  potentially improve the performance of the insertion process.  A bad
+       *  hint would cause no gains in efficiency.
+       *
+       *  See
+       *  http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html
+       *  for more on @a hinting.
+       *
+       *  Insertion requires amortized constant time.
+       */
+      iterator
+      insert(const_iterator __hint, const value_type& __x)
+      { return _M_h.insert(__hint, __x); }
+
+      template<typename _Pair>
+	iterator
+	insert(const_iterator __hint, _Pair&& __x)
+	{ return _M_h.insert(__hint, std::move(__x)); }
+      //@}
+
+      /**
+       *  @brief A template function that attempts to insert a range of
+       *  elements.
+       *  @param  __first  Iterator pointing to the start of the range to be
+       *                   inserted.
+       *  @param  __last  Iterator pointing to the end of the range.
+       *
+       *  Complexity similar to that of the range constructor.
+       */
+      template<typename _InputIterator>
+	void
+	insert(_InputIterator __first, _InputIterator __last)
+	{ _M_h.insert(__first, __last); }
+
+      /**
+       *  @brief Attempts to insert a list of elements into the %unordered_map.
+       *  @param  __l  A std::initializer_list<value_type> of elements
+       *               to be inserted.
+       *
+       *  Complexity similar to that of the range constructor.
+       */
+      void
+      insert(initializer_list<value_type> __l)
+      { _M_h.insert(__l); }
+
+      //@{
+      /**
+       *  @brief Erases an element from an %unordered_map.
+       *  @param  __position  An iterator pointing to the element to be erased.
+       *  @return An iterator pointing to the element immediately following
+       *          @a __position prior to the element being erased. If no such
+       *          element exists, end() is returned.
+       *
+       *  This function erases an element, pointed to by the given iterator,
+       *  from an %unordered_map.
+       *  Note that this function only erases the element, and that if the
+       *  element is itself a pointer, the pointed-to memory is not touched in
+       *  any way.  Managing the pointer is the user's responsibility.
+       */
+      iterator
+      erase(const_iterator __position)
+      { return _M_h.erase(__position); }
+
+      // LWG 2059.
+      iterator
+      erase(iterator __it)
+      { return _M_h.erase(__it); }
+      //@}
+
+      /**
+       *  @brief Erases elements according to the provided key.
+       *  @param  __x  Key of element to be erased.
+       *  @return  The number of elements erased.
+       *
+       *  This function erases all the elements located by the given key from
+       *  an %unordered_map. For an %unordered_map the result of this function
+       *  can only be 0 (not present) or 1 (present).
+       *  Note that this function only erases the element, and that if the
+       *  element is itself a pointer, the pointed-to memory is not touched in
+       *  any way.  Managing the pointer is the user's responsibility.
+       */
+      size_type
+      erase(const key_type& __x)
+      { return _M_h.erase(__x); }
+
+      /**
+       *  @brief Erases a [__first,__last) range of elements from an
+       *  %unordered_map.
+       *  @param  __first  Iterator pointing to the start of the range to be
+       *                  erased.
+       *  @param __last  Iterator pointing to the end of the range to
+       *                be erased.
+       *  @return The iterator @a __last.
+       *
+       *  This function erases a sequence of elements from an %unordered_map.
+       *  Note that this function only erases the elements, and that if
+       *  the element is itself a pointer, the pointed-to memory is not touched
+       *  in any way.  Managing the pointer is the user's responsibility.
+       */
+      iterator
+      erase(const_iterator __first, const_iterator __last)
+      { return _M_h.erase(__first, __last); }
+
+      /**
+       *  Erases all elements in an %unordered_map.
+       *  Note that this function only erases the elements, and that if the
+       *  elements themselves are pointers, the pointed-to memory is not touched
+       *  in any way.  Managing the pointer is the user's responsibility.
+       */
+      void
+      clear() noexcept
+      { _M_h.clear(); }
+
+      /**
+       *  @brief  Swaps data with another %unordered_map.
+       *  @param  __x  An %unordered_map of the same element and allocator
+       *  types.
+       *
+       *  This exchanges the elements between two %unordered_map in constant time.
+       *  Note that the global std::swap() function is specialized such that
+       *  std::swap(m1,m2) will feed to this function.
+       */
+      void
+      swap(unordered_map& __x)
+      { _M_h.swap(__x._M_h); }
+
+      // observers.
+
+      ///  Returns the hash functor object with which the %unordered_map was
+      ///  constructed.
+      hasher
+      hash_function() const
+      { return _M_h.hash_function(); }
+
+      ///  Returns the key comparison object with which the %unordered_map was
+      ///  constructed.
+      key_equal
+      key_eq() const
+      { return _M_h.key_eq(); }
+
+      // lookup.
+
+      //@{
+      /**
+       *  @brief Tries to locate an element in an %unordered_map.
+       *  @param  __x  Key to be located.
+       *  @return  Iterator pointing to sought-after element, or end() if not
+       *           found.
+       *
+       *  This function takes a key and tries to locate the element with which
+       *  the key matches.  If successful the function returns an iterator
+       *  pointing to the sought after element.  If unsuccessful it returns the
+       *  past-the-end ( @c end() ) iterator.
+       */
+      iterator
+      find(const key_type& __x)
+      { return _M_h.find(__x); }
+
+      const_iterator
+      find(const key_type& __x) const
+      { return _M_h.find(__x); }
+      //@}
+
+      /**
+       *  @brief  Finds the number of elements.
+       *  @param  __x  Key to count.
+       *  @return  Number of elements with specified key.
+       *
+       *  This function only makes sense for %unordered_multimap; for
+       *  %unordered_map the result will either be 0 (not present) or 1
+       *  (present).
+       */
+      size_type
+      count(const key_type& __x) const
+      { return _M_h.count(__x); }
+
+      //@{
+      /**
+       *  @brief Finds a subsequence matching given key.
+       *  @param  __x  Key to be located.
+       *  @return  Pair of iterators that possibly points to the subsequence
+       *           matching given key.
+       *
+       *  This function probably only makes sense for %unordered_multimap.
+       */
+      std::pair<iterator, iterator>
+      equal_range(const key_type& __x)
+      { return _M_h.equal_range(__x); }
+
+      std::pair<const_iterator, const_iterator>
+      equal_range(const key_type& __x) const
+      { return _M_h.equal_range(__x); }
+      //@}
+
+      //@{
+      /**
+       *  @brief  Subscript ( @c [] ) access to %unordered_map data.
+       *  @param  __k  The key for which data should be retrieved.
+       *  @return  A reference to the data of the (key,data) %pair.
+       *
+       *  Allows for easy lookup with the subscript ( @c [] )operator.  Returns
+       *  data associated with the key specified in subscript.  If the key does
+       *  not exist, a pair with that key is created using default values, which
+       *  is then returned.
+       *
+       *  Lookup requires constant time.
+       */
+      mapped_type&
+      operator[](const key_type& __k)
+      { return _M_h[__k]; }
+
+      mapped_type&
+      operator[](key_type&& __k)
+      { return _M_h[std::move(__k)]; }
+      //@}
+
+      //@{
+      /**
+       *  @brief  Access to %unordered_map data.
+       *  @param  __k  The key for which data should be retrieved.
+       *  @return  A reference to the data whose key is equal to @a __k, if
+       *           such a data is present in the %unordered_map.
+       *  @throw  std::out_of_range  If no such data is present.
+       */
+      mapped_type&
+      at(const key_type& __k)
+      { return _M_h.at(__k); }
+
+      const mapped_type&
+      at(const key_type& __k) const
+      { return _M_h.at(__k); }
+      //@}
+
+      // bucket interface.
+
+      /// Returns the number of buckets of the %unordered_map.
+      size_type
+      bucket_count() const noexcept
+      { return _M_h.bucket_count(); }
+
+      /// Returns the maximum number of buckets of the %unordered_map.
+      size_type
+      max_bucket_count() const noexcept
+      { return _M_h.max_bucket_count(); }
+
+      /*
+       * @brief  Returns the number of elements in a given bucket.
+       * @param  __n  A bucket index.
+       * @return  The number of elements in the bucket.
+       */
+      size_type
+      bucket_size(size_type __n) const
+      { return _M_h.bucket_size(__n); }
+
+      /*
+       * @brief  Returns the bucket index of a given element.
+       * @param  __key  A key instance.
+       * @return  The key bucket index.
+       */
+      size_type
+      bucket(const key_type& __key) const
+      { return _M_h.bucket(__key); }
+      
+      /**
+       *  @brief  Returns a read/write iterator pointing to the first bucket
+       *         element.
+       *  @param  __n The bucket index.
+       *  @return  A read/write local iterator.
+       */
+      local_iterator
+      begin(size_type __n)
+      { return _M_h.begin(__n); }
+
+      //@{
+      /**
+       *  @brief  Returns a read-only (constant) iterator pointing to the first
+       *         bucket element.
+       *  @param  __n The bucket index.
+       *  @return  A read-only local iterator.
+       */
+      const_local_iterator
+      begin(size_type __n) const
+      { return _M_h.begin(__n); }
+
+      const_local_iterator
+      cbegin(size_type __n) const
+      { return _M_h.cbegin(__n); }
+      //@}
+
+      /**
+       *  @brief  Returns a read/write iterator pointing to one past the last
+       *         bucket elements.
+       *  @param  __n The bucket index.
+       *  @return  A read/write local iterator.
+       */
+      local_iterator
+      end(size_type __n)
+      { return _M_h.end(__n); }
+
+      //@{
+      /**
+       *  @brief  Returns a read-only (constant) iterator pointing to one past
+       *         the last bucket elements.
+       *  @param  __n The bucket index.
+       *  @return  A read-only local iterator.
+       */
+      const_local_iterator
+      end(size_type __n) const
+      { return _M_h.end(__n); }
+
+      const_local_iterator
+      cend(size_type __n) const
+      { return _M_h.cend(__n); }
+      //@}
+
+      // hash policy.
+
+      /// Returns the average number of elements per bucket.
+      float
+      load_factor() const noexcept
+      { return _M_h.load_factor(); }
+
+      /// Returns a positive number that the %unordered_map tries to keep the
+      /// load factor less than or equal to.
+      float
+      max_load_factor() const noexcept
+      { return _M_h.max_load_factor(); }
+
+      /**
+       *  @brief  Change the %unordered_map maximum load factor.
+       *  @param  __z The new maximum load factor.
+       */
+      void
+      max_load_factor(float __z)
+      { _M_h.max_load_factor(__z); }
+
+      /**
+       *  @brief  May rehash the %unordered_map.
+       *  @param  __n The new number of buckets.
+       *
+       *  Rehash will occur only if the new number of buckets respect the
+       *  %unordered_map maximum load factor.
+       */
+      void
+      rehash(size_type __n)
+      { _M_h.rehash(__n); }
+
+      /**
+       *  @brief  Prepare the %unordered_map for a specified number of
+       *          elements.
+       *  @param  __n Number of elements required.
+       *
+       *  Same as rehash(ceil(n / max_load_factor())).
+       */
+      void
+      reserve(size_type __n)
+      { _M_h.reserve(__n); }
+
+      template<typename _Key1, typename _Tp1, typename _Hash1, typename _Pred1,
+	       typename _Alloc1>
+        friend bool
+      operator==(const unordered_map<_Key1, _Tp1, _Hash1, _Pred1, _Alloc1>&,
+		 const unordered_map<_Key1, _Tp1, _Hash1, _Pred1, _Alloc1>&);
     };
 
   /**
@@ -159,41 +772,595 @@
 	   class _Pred = std::equal_to<_Key>,
 	   class _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
     class unordered_multimap
-    : public __ummap_hashtable<_Key, _Tp, _Hash, _Pred, _Alloc>
     {
-      typedef __ummap_hashtable<_Key, _Tp, _Hash, _Pred, _Alloc>  _Base;
+      typedef __ummap_hashtable<_Key, _Tp, _Hash, _Pred, _Alloc>  _Hashtable;
+      _Hashtable _M_h;
 
     public:
-      typedef typename _Base::value_type      value_type;
-      typedef typename _Base::size_type       size_type;
-      typedef typename _Base::hasher          hasher;
-      typedef typename _Base::key_equal       key_equal;
-      typedef typename _Base::allocator_type  allocator_type;
+      // typedefs:
+      //@{
+      /// Public typedefs.
+      typedef typename _Hashtable::key_type	key_type;
+      typedef typename _Hashtable::value_type	value_type;
+      typedef typename _Hashtable::mapped_type	mapped_type;
+      typedef typename _Hashtable::hasher	hasher;
+      typedef typename _Hashtable::key_equal	key_equal;
+      typedef typename _Hashtable::allocator_type allocator_type;
+      //@}
 
+      //@{
+      ///  Iterator-related typedefs.
+      typedef typename allocator_type::pointer		pointer;
+      typedef typename allocator_type::const_pointer	const_pointer;
+      typedef typename allocator_type::reference	reference;
+      typedef typename allocator_type::const_reference	const_reference;
+      typedef typename _Hashtable::iterator		iterator;
+      typedef typename _Hashtable::const_iterator	const_iterator;
+      typedef typename _Hashtable::local_iterator	local_iterator;
+      typedef typename _Hashtable::const_local_iterator	const_local_iterator;
+      typedef typename _Hashtable::size_type		size_type;
+      typedef typename _Hashtable::difference_type	difference_type;
+      //@}
+
+      //construct/destroy/copy
+
+      /**
+       *  @brief  Default constructor creates no elements.
+       *  @param __n  Initial number of buckets.
+       *  @param __hf  A hash functor.
+       *  @param __eql  A key equality functor.
+       *  @param __a  An allocator object.
+       */
       explicit
       unordered_multimap(size_type __n = 10,
 			 const hasher& __hf = hasher(),
 			 const key_equal& __eql = key_equal(),
 			 const allocator_type& __a = allocator_type())
-      : _Base(__n, __hf, __eql, __a)
+      : _M_h(__n, __hf, __eql, __a)
       { }
 
+      /**
+       *  @brief  Builds an %unordered_multimap from a range.
+       *  @param  __first  An input iterator.
+       *  @param  __last  An input iterator.
+       *  @param __n  Minimal initial number of buckets.
+       *  @param __hf  A hash functor.
+       *  @param __eql  A key equality functor.
+       *  @param __a  An allocator object.
+       *
+       *  Create an %unordered_multimap consisting of copies of the elements
+       *  from [__first,__last).  This is linear in N (where N is
+       *  distance(__first,__last)).
+       */
       template<typename _InputIterator>
 	unordered_multimap(_InputIterator __f, _InputIterator __l,
 			   size_type __n = 0,
 			   const hasher& __hf = hasher(),
 			   const key_equal& __eql = key_equal(),
 			   const allocator_type& __a = allocator_type())
-	: _Base(__f, __l, __n, __hf, __eql, __a)
+	: _M_h(__f, __l, __n, __hf, __eql, __a)
 	{ }
 
+      /// Copy constructor.
+      unordered_multimap(const unordered_multimap&) = default;
+
+      /// Move constrcutor.
+      unordered_multimap(unordered_multimap&&) = default;
+
+      /**
+       *  @brief  Builds an %unordered_multimap from an initializer_list.
+       *  @param  __l  An initializer_list.
+       *  @param __n  Minimal initial number of buckets.
+       *  @param __hf  A hash functor.
+       *  @param __eql  A key equality functor.
+       *  @param  __a  An allocator object.
+       *
+       *  Create an %unordered_multimap consisting of copies of the elements in
+       *  the list. This is linear in N (where N is @a __l.size()).
+       */
       unordered_multimap(initializer_list<value_type> __l,
 			 size_type __n = 0,
 			 const hasher& __hf = hasher(),
 			 const key_equal& __eql = key_equal(),
 			 const allocator_type& __a = allocator_type())
-      : _Base(__l.begin(), __l.end(), __n, __hf, __eql, __a)
+	: _M_h(__l, __n, __hf, __eql, __a)
       { }
+
+      /// Copy assignment operator.
+      unordered_multimap&
+      operator=(const unordered_multimap&) = default;
+
+      /// Move assignment operator.
+      unordered_multimap&
+      operator=(unordered_multimap&&) = default;
+
+      /**
+       *  @brief  %Unordered_multimap list assignment operator.
+       *  @param  __l  An initializer_list.
+       *
+       *  This function fills an %unordered_multimap with copies of the elements
+       *  in the initializer list @a __l.
+       *
+       *  Note that the assignment completely changes the %unordered_multimap
+       *  and that the resulting %unordered_multimap's size is the same as the
+       *  number of elements assigned.  Old data may be lost.
+       */
+      unordered_multimap&
+      operator=(initializer_list<value_type> __l)
+      {
+	_M_h = __l;
+	return *this;
+      }
+
+      ///  Returns the allocator object with which the %unordered_multimap was
+      ///  constructed.
+      allocator_type
+      get_allocator() const noexcept
+      { return _M_h.get_allocator(); }
+
+      // size and capacity:
+
+      ///  Returns true if the %unordered_multimap is empty.
+      bool
+      empty() const noexcept
+      { return _M_h.empty(); }
+
+      ///  Returns the size of the %unordered_multimap.
+      size_type
+      size() const noexcept
+      { return _M_h.size(); }
+
+      ///  Returns the maximum size of the %unordered_multimap.
+      size_type
+      max_size() const noexcept
+      { return _M_h.max_size(); }
+
+      // iterators.
+
+      /**
+       *  Returns a read/write iterator that points to the first element in the
+       *  %unordered_multimap.
+       */
+      iterator
+      begin() noexcept
+      { return _M_h.begin(); }
+
+      //@{
+      /**
+       *  Returns a read-only (constant) iterator that points to the first
+       *  element in the %unordered_multimap.
+       */
+      const_iterator
+      begin() const noexcept
+      { return _M_h.begin(); }
+
+      const_iterator
+      cbegin() const noexcept
+      { return _M_h.begin(); }
+      //@}
+
+      /**
+       *  Returns a read/write iterator that points one past the last element in
+       *  the %unordered_multimap.
+       */
+      iterator
+      end() noexcept
+      { return _M_h.end(); }
+
+      //@{
+      /**
+       *  Returns a read-only (constant) iterator that points one past the last
+       *  element in the %unordered_multimap.
+       */
+      const_iterator
+      end() const noexcept
+      { return _M_h.end(); }
+
+      const_iterator
+      cend() const noexcept
+      { return _M_h.end(); }
+      //@}
+
+      // modifiers.
+
+      /**
+       *  @brief Attempts to build and insert a std::pair into the
+       *  %unordered_multimap.
+       *
+       *  @param __args  Arguments used to generate a new pair instance (see
+       *	        std::piecewise_contruct for passing arguments to each
+       *	        part of the pair constructor).
+       *
+       *  @return  An iterator that points to the inserted pair.
+       *
+       *  This function attempts to build and insert a (key, value) %pair into
+       *  the %unordered_multimap.
+       *
+       *  Insertion requires amortized constant time.
+       */
+      template<typename... _Args>
+	iterator
+	emplace(_Args&&... __args)
+	{ return _M_h.emplace(std::forward<_Args>(__args)...); }
+
+      /**
+       *  @brief Attempts to build and insert a std::pair into the %unordered_multimap.
+       *
+       *  @param  __pos  An iterator that serves as a hint as to where the pair
+       *                should be inserted.
+       *  @param  __args  Arguments used to generate a new pair instance (see
+       *	         std::piecewise_contruct for passing arguments to each
+       *	         part of the pair constructor).
+       *  @return An iterator that points to the element with key of the
+       *          std::pair built from @a __args.
+       *
+       *  Note that the first parameter is only a hint and can potentially
+       *  improve the performance of the insertion process. A bad hint would
+       *  cause no gains in efficiency.
+       *
+       *  See
+       *  http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html
+       *  for more on @a hinting.
+       *
+       *  Insertion requires amortized constant time.
+       */
+      template<typename... _Args>
+	iterator
+	emplace_hint(const_iterator __pos, _Args&&... __args)
+	{ return _M_h.emplace_hint(__pos, std::forward<_Args>(__args)...); }
+
+      //@{
+      /**
+       *  @brief Inserts a std::pair into the %unordered_multimap.
+       *  @param __x Pair to be inserted (see std::make_pair for easy
+       *	     creation of pairs).
+       *
+       *  @return  An iterator that points to the inserted pair.
+       *
+       *  Insertion requires amortized constant time.
+       */
+      iterator
+      insert(const value_type& __x)
+      { return _M_h.insert(__x); }
+
+      template<typename _Pair>
+	iterator
+	insert(_Pair&& __x)
+	{ return _M_h.insert(std::move(__x)); }
+      //@}
+
+      //@{
+      /**
+       *  @brief Inserts a std::pair into the %unordered_multimap.
+       *  @param  __hint  An iterator that serves as a hint as to where the
+       *                 pair should be inserted.
+       *  @param  __x  Pair to be inserted (see std::make_pair for easy creation
+       *               of pairs).
+       *  @return An iterator that points to the element with key of
+       *           @a __x (may or may not be the %pair passed in).
+       *
+       *  Note that the first parameter is only a hint and can potentially
+       *  improve the performance of the insertion process.  A bad hint would
+       *  cause no gains in efficiency.
+       *
+       *  See
+       *  http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html
+       *  for more on @a hinting.
+       *
+       *  Insertion requires amortized constant time.
+       */
+      iterator
+      insert(const_iterator __hint, const value_type& __x)
+      { return _M_h.insert(__hint, __x); }
+
+      template<typename _Pair>
+	iterator
+	insert(const_iterator __hint, _Pair&& __x)
+	{ return _M_h.insert(__hint, std::move(__x)); }
+      //@}
+
+      /**
+       *  @brief A template function that attempts to insert a range of
+       *  elements.
+       *  @param  __first  Iterator pointing to the start of the range to be
+       *                   inserted.
+       *  @param  __last  Iterator pointing to the end of the range.
+       *
+       *  Complexity similar to that of the range constructor.
+       */
+      template<typename _InputIterator>
+	void
+	insert(_InputIterator __first, _InputIterator __last)
+	{ _M_h.insert(__first, __last); }
+
+      /**
+       *  @brief Attempts to insert a list of elements into the
+       *  %unordered_multimap.
+       *  @param  __l  A std::initializer_list<value_type> of elements
+       *               to be inserted.
+       *
+       *  Complexity similar to that of the range constructor.
+       */
+      void
+      insert(initializer_list<value_type> __l)
+      { _M_h.insert(__l); }
+
+      //@{
+      /**
+       *  @brief Erases an element from an %unordered_multimap.
+       *  @param  __position  An iterator pointing to the element to be erased.
+       *  @return An iterator pointing to the element immediately following
+       *          @a __position prior to the element being erased. If no such
+       *          element exists, end() is returned.
+       *
+       *  This function erases an element, pointed to by the given iterator,
+       *  from an %unordered_multimap.
+       *  Note that this function only erases the element, and that if the
+       *  element is itself a pointer, the pointed-to memory is not touched in
+       *  any way.  Managing the pointer is the user's responsibility.
+       */
+      iterator
+      erase(const_iterator __position)
+      { return _M_h.erase(__position); }
+
+      // LWG 2059.
+      iterator
+      erase(iterator __it)
+      { return _M_h.erase(__it); }
+      //@}
+
+      /**
+       *  @brief Erases elements according to the provided key.
+       *  @param  __x  Key of elements to be erased.
+       *  @return  The number of elements erased.
+       *
+       *  This function erases all the elements located by the given key from
+       *  an %unordered_multimap.
+       *  Note that this function only erases the element, and that if the
+       *  element is itself a pointer, the pointed-to memory is not touched in
+       *  any way.  Managing the pointer is the user's responsibility.
+       */
+      size_type
+      erase(const key_type& __x)
+      { return _M_h.erase(__x); }
+
+      /**
+       *  @brief Erases a [__first,__last) range of elements from an
+       *  %unordered_multimap.
+       *  @param  __first  Iterator pointing to the start of the range to be
+       *                  erased.
+       *  @param __last  Iterator pointing to the end of the range to
+       *                be erased.
+       *  @return The iterator @a __last.
+       *
+       *  This function erases a sequence of elements from an
+       *  %unordered_multimap.
+       *  Note that this function only erases the elements, and that if
+       *  the element is itself a pointer, the pointed-to memory is not touched
+       *  in any way.  Managing the pointer is the user's responsibility.
+       */
+      iterator
+      erase(const_iterator __first, const_iterator __last)
+      { return _M_h.erase(__first, __last); }
+
+      /**
+       *  Erases all elements in an %unordered_multimap.
+       *  Note that this function only erases the elements, and that if the
+       *  elements themselves are pointers, the pointed-to memory is not touched
+       *  in any way.  Managing the pointer is the user's responsibility.
+       */
+      void
+      clear() noexcept
+      { _M_h.clear(); }
+
+      /**
+       *  @brief  Swaps data with another %unordered_multimap.
+       *  @param  __x  An %unordered_multimap of the same element and allocator
+       *  types.
+       *
+       *  This exchanges the elements between two %unordered_multimap in
+       *  constant time.
+       *  Note that the global std::swap() function is specialized such that
+       *  std::swap(m1,m2) will feed to this function.
+       */
+      void
+      swap(unordered_multimap& __x)
+      { _M_h.swap(__x._M_h); }
+
+      // observers.
+
+      ///  Returns the hash functor object with which the %unordered_multimap
+      ///  was constructed.
+      hasher
+      hash_function() const
+      { return _M_h.hash_function(); }
+
+      ///  Returns the key comparison object with which the %unordered_multimap
+      ///  was constructed.
+      key_equal
+      key_eq() const
+      { return _M_h.key_eq(); }
+
+      // lookup.
+
+      //@{
+      /**
+       *  @brief Tries to locate an element in an %unordered_multimap.
+       *  @param  __x  Key to be located.
+       *  @return  Iterator pointing to sought-after element, or end() if not
+       *           found.
+       *
+       *  This function takes a key and tries to locate the element with which
+       *  the key matches.  If successful the function returns an iterator
+       *  pointing to the sought after element.  If unsuccessful it returns the
+       *  past-the-end ( @c end() ) iterator.
+       */
+      iterator
+      find(const key_type& __x)
+      { return _M_h.find(__x); }
+
+      const_iterator
+      find(const key_type& __x) const
+      { return _M_h.find(__x); }
+      //@}
+
+      /**
+       *  @brief  Finds the number of elements.
+       *  @param  __x  Key to count.
+       *  @return  Number of elements with specified key.
+       */
+      size_type
+      count(const key_type& __x) const
+      { return _M_h.count(__x); }
+
+      //@{
+      /**
+       *  @brief Finds a subsequence matching given key.
+       *  @param  __x  Key to be located.
+       *  @return  Pair of iterators that possibly points to the subsequence
+       *           matching given key.
+       */
+      std::pair<iterator, iterator>
+      equal_range(const key_type& __x)
+      { return _M_h.equal_range(__x); }
+
+      std::pair<const_iterator, const_iterator>
+      equal_range(const key_type& __x) const
+      { return _M_h.equal_range(__x); }
+      //@}
+
+      // bucket interface.
+
+      /// Returns the number of buckets of the %unordered_multimap.
+      size_type
+      bucket_count() const noexcept
+      { return _M_h.bucket_count(); }
+
+      /// Returns the maximum number of buckets of the %unordered_multimap.
+      size_type
+      max_bucket_count() const noexcept
+      { return _M_h.max_bucket_count(); }
+
+      /*
+       * @brief  Returns the number of elements in a given bucket.
+       * @param  __n  A bucket index.
+       * @return  The number of elements in the bucket.
+       */
+      size_type
+      bucket_size(size_type __n) const
+      { return _M_h.bucket_size(__n); }
+
+      /*
+       * @brief  Returns the bucket index of a given element.
+       * @param  __key  A key instance.
+       * @return  The key bucket index.
+       */
+      size_type
+      bucket(const key_type& __key) const
+      { return _M_h.bucket(__key); }
+      
+      /**
+       *  @brief  Returns a read/write iterator pointing to the first bucket
+       *         element.
+       *  @param  __n The bucket index.
+       *  @return  A read/write local iterator.
+       */
+      local_iterator
+      begin(size_type __n)
+      { return _M_h.begin(__n); }
+
+      //@{
+      /**
+       *  @brief  Returns a read-only (constant) iterator pointing to the first
+       *         bucket element.
+       *  @param  __n The bucket index.
+       *  @return  A read-only local iterator.
+       */
+      const_local_iterator
+      begin(size_type __n) const
+      { return _M_h.begin(__n); }
+
+      const_local_iterator
+      cbegin(size_type __n) const
+      { return _M_h.cbegin(__n); }
+      //@}
+
+      /**
+       *  @brief  Returns a read/write iterator pointing to one past the last
+       *         bucket elements.
+       *  @param  __n The bucket index.
+       *  @return  A read/write local iterator.
+       */
+      local_iterator
+      end(size_type __n)
+      { return _M_h.end(__n); }
+
+      //@{
+      /**
+       *  @brief  Returns a read-only (constant) iterator pointing to one past
+       *         the last bucket elements.
+       *  @param  __n The bucket index.
+       *  @return  A read-only local iterator.
+       */
+      const_local_iterator
+      end(size_type __n) const
+      { return _M_h.end(__n); }
+
+      const_local_iterator
+      cend(size_type __n) const
+      { return _M_h.cend(__n); }
+      //@}
+
+      // hash policy.
+
+      /// Returns the average number of elements per bucket.
+      float
+      load_factor() const noexcept
+      { return _M_h.load_factor(); }
+
+      /// Returns a positive number that the %unordered_multimap tries to keep
+      /// the load factor less than or equal to.
+      float
+      max_load_factor() const noexcept
+      { return _M_h.max_load_factor(); }
+
+      /**
+       *  @brief  Change the %unordered_multimap maximum load factor.
+       *  @param  __z The new maximum load factor.
+       */
+      void
+      max_load_factor(float __z)
+      { _M_h.max_load_factor(__z); }
+
+      /**
+       *  @brief  May rehash the %unordered_multimap.
+       *  @param  __n The new number of buckets.
+       *
+       *  Rehash will occur only if the new number of buckets respect the
+       *  %unordered_multimap maximum load factor.
+       */
+      void
+      rehash(size_type __n)
+      { _M_h.rehash(__n); }
+
+      /**
+       *  @brief  Prepare the %unordered_multimap for a specified number of
+       *          elements.
+       *  @param  __n Number of elements required.
+       *
+       *  Same as rehash(ceil(n / max_load_factor())).
+       */
+      void
+      reserve(size_type __n)
+      { _M_h.reserve(__n); }
+
+      template<typename _Key1, typename _Tp1, typename _Hash1, typename _Pred1,
+	       typename _Alloc1>
+        friend bool
+	operator==(const unordered_multimap<_Key1, _Tp1,
+					    _Hash1, _Pred1, _Alloc1>&,
+		   const unordered_multimap<_Key1, _Tp1,
+					    _Hash1, _Pred1, _Alloc1>&);
     };
 
   template<class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
@@ -212,7 +1379,7 @@
     inline bool
     operator==(const unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>& __x,
 	       const unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>& __y)
-    { return __x._M_equal(__y); }
+    { return __x._M_h._M_equal(__y._M_h); }
 
   template<class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
     inline bool
@@ -224,7 +1391,7 @@
     inline bool
     operator==(const unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>& __x,
 	       const unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>& __y)
-    { return __x._M_equal(__y); }
+    { return __x._M_h._M_equal(__y._M_h); }
 
   template<class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
     inline bool
Index: include/bits/unordered_set.h
===================================================================
--- include/bits/unordered_set.h	(revision 192695)
+++ include/bits/unordered_set.h	(working copy)
@@ -158,29 +158,11 @@
 	: _M_h(__f, __l, __n, __hf, __eql, __a)
 	{ }
 
-      /**
-       *  @brief  %Unordered_set copy constructor.
-       *  @param  __x  An %unordered_set of identical element and allocator
-       *  types.
-       *
-       *  The newly-created %unordered_set uses a copy of the allocation object
-       *  used by @a __x.
-       */
-      unordered_set(const unordered_set& __x)
-	: _M_h(__x._M_h) { }
+      /// Copy constructor.
+      unordered_set(const unordered_set&) = default;
 
-     /**
-       *  @brief %Unordered_set move constructor
-       *  @param __x  An %unordered_set of identical element and allocator
-       *  types.
-       *
-       *  The newly-created %unordered_set contains the exact contents of @a
-       *  __x. The contents of @a __x are a valid, but unspecified
-       *  %unordered_set.
-       */
-      unordered_set(unordered_set&& __x)
-	: _M_h(std::move(__x._M_h))
-      { }
+      /// Move constructor.
+      unordered_set(unordered_set&&) = default;
 
       /**
        *  @brief  Builds an %unordered_set from an initializer_list.
@@ -201,35 +183,13 @@
 	: _M_h(__l, __n, __hf, __eql, __a)
       { }
 
-      /**
-       *  @brief  %Unordered_set assignment operator.
-       *  @param  __x  An %unordered_set of identical element and allocator
-       *  types.
-       *
-       *  All the elements of @a __x are copied, but unlike the copy
-       *  constructor, the allocator object is not copied.
-       */
+      /// Copy assignment operator.
       unordered_set&
-      operator=(const unordered_set& __x)
-      {
-	_M_h = __x._M_h;
-	return *this;
-      }
+      operator=(const unordered_set&) = default;
 
-      /**
-       *  @brief %Unordered_set move assignment operator.
-       *  @param __x  An %unordered_set of identical element and allocator
-       *  types.
-       *
-       *  The contents of @a __x are moved into this %unordered_set (without
-       *  copying). @a __x is a valid, but unspecified %unordered_set.
-       */
+      /// Move assignment operator.
       unordered_set&
-      operator=(unordered_set&& __x)
-      {
-	_M_h = std::move(__x._M_h);
-	return *this;
-      }
+      operator=(unordered_set&&) = default;
 
       /**
        *  @brief  %Unordered_set list assignment operator.
@@ -330,7 +290,8 @@
        *
        *  This function attempts to build and insert an element into the
        *  %unordered_set. An %unordered_set relies on unique keys and thus an
-       *  element is only inserted if it is not already present in the %set.
+       *  element is only inserted if it is not already present in the
+       *  %unordered_set.
        *
        *  Insertion requires amortized constant time.
        */
@@ -802,29 +763,11 @@
 	: _M_h(__f, __l, __n, __hf, __eql, __a)
 	{ }
 
-      /**
-       *  @brief  %Unordered_multiset copy constructor.
-       *  @param  __x  An %unordered_multiset of identical element and allocator
-       *  types.
-       *
-       *  The newly-created %unordered_multiset uses a copy of the allocation object
-       *  used by @a __x.
-       */
-      unordered_multiset(const unordered_multiset& __x)
-	: _M_h(__x._M_h) { }
+      /// Copy constructor.
+      unordered_multiset(const unordered_multiset&) = default;
 
-     /**
-       *  @brief %Unordered_multiset move constructor
-       *  @param __x  An %unordered_multiset of identical element and allocator
-       *  types.
-       *
-       *  The newly-created %unordered_multiset contains the exact contents of
-       *  @a __x. The contents of @a __x are a valid, but unspecified
-       *  %unordered_multiset.
-       */
-      unordered_multiset(unordered_multiset&& __x)
-	: _M_h(std::move(__x._M_h))
-      { }
+      /// Move constructor.
+      unordered_multiset(unordered_multiset&&) = default;
 
       /**
        *  @brief  Builds an %unordered_multiset from an initializer_list.
@@ -845,36 +788,13 @@
 	: _M_h(__l, __n, __hf, __eql, __a)
       { }
 
-      /**
-       *  @brief  %Unordered_multiset assignment operator.
-       *  @param  __x  An %unordered_multiset of identical element and allocator
-       *  types.
-       *
-       *  All the elements of @a __x are copied, but unlike the copy
-       *  constructor, the allocator object is not copied.
-       */
+      /// Copy assignment operator.
       unordered_multiset&
-      operator=(const unordered_multiset& __x)
-      {
-	_M_h = __x._M_h;
-	return *this;
-      }
+      operator=(const unordered_multiset&) = default;
 
-      /**
-       *  @brief %Unordered_multiset move assignment operator.
-       *  @param __x  An %unordered_multiset of identical element and allocator
-       *  types.
-       *
-       *  The contents of @a __x are moved into this %unordered_multiset
-       *  (without copying). @a __x is a valid, but unspecified
-       *  %unordered_multiset.
-       */
+      /// Move assignment operator.
       unordered_multiset&
-      operator=(unordered_multiset&& __x)
-      {
-	_M_h = std::move(__x._M_h);
-	return *this;
-      }
+      operator=(unordered_multiset&& __x) = default;
 
       /**
        *  @brief  %Unordered_multiset list assignment operator.

Reply via email to