hengfeiyang commented on PR #3700: URL: https://github.com/apache/arrow-datafusion/pull/3700#issuecomment-1271752120
@alamb i tested with #3733 , it looks `with_column` still can't work. i tested use config: Cargo.toml ``` datafusion = { git = "https://github.com/apache/arrow-datafusion" } ``` with the example code: ``` use std::sync::Arc; use datafusion::arrow::array::Int32Array; use datafusion::arrow::datatypes::{DataType, Field, Schema}; use datafusion::arrow::record_batch::RecordBatch; use datafusion::datasource::MemTable; use datafusion::error::Result; use datafusion::from_slice::FromSlice; use datafusion::prelude::{col, lit, SessionContext}; /// This example demonstrates how to use the DataFrame API against in-memory data. #[tokio::main] async fn main() -> Result<()> { // define a schema. let schema = Arc::new(Schema::new(vec![Field::new("f.c", DataType::Int32, false)])); // define data. let batch = RecordBatch::try_new( schema.clone(), vec![Arc::new(Int32Array::from_slice([1, 10, 10, 100]))], )?; // declare a new context. In spark API, this corresponds to a new spark SQLsession let ctx = SessionContext::new(); // declare a table in memory. In spark API, this corresponds to createDataFrame(...). let provider = MemTable::try_new(schema.clone(), vec![vec![batch]])?; ctx.register_table("t", Arc::new(provider))?; let df = ctx.table("t")?; // construct an expression corresponding to "SELECT * FROM t WHERE f.c = 10" in SQL let filter = col("f.c").eq(lit(10)); let df = df.filter(filter)?; // print the results df.show().await?; Ok(()) } ``` Result: ``` Error: SchemaError(FieldNotFound { qualifier: Some("f"), name: "c", valid_fields: Some(["t.f.c"]) }) ``` -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: github-unsubscr...@arrow.apache.org For queries about this service, please contact Infrastructure at: us...@infra.apache.org