vibhatha commented on code in PR #325:
URL: https://github.com/apache/arrow-cookbook/pull/325#discussion_r1316145455


##########
java/source/cdata.rst:
##########
@@ -0,0 +1,507 @@
+.. Licensed to the Apache Software Foundation (ASF) under one
+.. or more contributor license agreements.  See the NOTICE file
+.. distributed with this work for additional information
+.. regarding copyright ownership.  The ASF licenses this file
+.. to you under the Apache License, Version 2.0 (the
+.. "License"); you may not use this file except in compliance
+.. with the License.  You may obtain a copy of the License at
+
+..   http://www.apache.org/licenses/LICENSE-2.0
+
+.. Unless required by applicable law or agreed to in writing,
+.. software distributed under the License is distributed on an
+.. "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+.. KIND, either express or implied.  See the License for the
+.. specific language governing permissions and limitations
+.. under the License.
+
+================
+C Data Interface
+================
+
+Recipes related to how to exchange data using C Data Interface specification.
+
+.. contents::
+
+Python (Consumer) - Java (Producer)
+===================================
+
+    For Python Consumer and Java Producer, please consider:
+
+    - The Root Allocator should be shared for all memory allocations.
+
+    - The Python application will sometimes shut down the Java JVM but Java 
JNI C Data will still work on releasing exported objects, which is why some 
guards have been implemented to protect against such scenarios. A warning 
message "WARNING: Failed to release Java C Data resource" indicates this 
scenario.
+
+    - We do not know when Root Allocator will be closed. It is for this reason 
that the Root Allocator should survive so long as the export/import of used 
objects is released. Here is an example of this scenario:
+
+        + Whenever Java code calls `allocator.close`, a memory leak will occur 
since many objects will have to be released on either Python or Java JNI sides.
+
+        + To solve memory leak problems, you will call Java `allocator.close` 
when Python and Java JNI have released all their objects, which is impossible 
to accomplish.
+
+    - In addition, Java applications should expose a method for closing all 
Java-created objects independently from Root Allocators.
+
+
+Sharing ValueVector
+*******************
+
+Java Side:
+
+.. testcode::
+
+    import org.apache.arrow.c.ArrowArray;
+    import org.apache.arrow.c.ArrowSchema;
+    import org.apache.arrow.c.Data;
+    import org.apache.arrow.memory.BufferAllocator;
+    import org.apache.arrow.memory.RootAllocator;
+    import org.apache.arrow.util.AutoCloseables;
+    import org.apache.arrow.vector.FieldVector;
+    import org.apache.arrow.vector.IntVector;
+
+    public class ShareValueVectorAPI {
+      final static BufferAllocator allocator = new RootAllocator();
+      final static IntVector intVector =
+          new IntVector("to_be_consumed_by_python", allocator);
+
+      public static BufferAllocator getAllocatorForJavaConsumers() {
+        return allocator;
+      }
+
+      public static IntVector getIntVectorForJavaConsumers() {
+        intVector.allocateNew(3);
+        intVector.set(0, 1);
+        intVector.set(1, 7);
+        intVector.set(2, 93);
+        intVector.setValueCount(3);
+        return intVector;
+      }
+
+      public static void closeAllocatorForJavaConsumers() {
+        try {
+          AutoCloseables.close(AutoCloseables.iter(intVector));
+        } catch (Exception e) {
+          throw new RuntimeException(e);
+        }
+      }
+
+      public static void simulateAsAJavaConsumers() {
+        try (
+            ArrowArray arrowArray = ArrowArray.allocateNew(allocator);
+            ArrowSchema arrowSchema = ArrowSchema.allocateNew(allocator)
+        ) {
+          Data.exportVector(allocator, getIntVectorForJavaConsumers(), null, 
arrowArray, arrowSchema);
+          try (FieldVector valueVectors = Data.importVector(allocator, 
arrowArray, arrowSchema, null);) {
+            System.out.print(valueVectors);
+          }
+        }
+        closeAllocatorForJavaConsumers();
+        allocator.close();
+      }
+    }
+
+    ShareValueVectorAPI.simulateAsAJavaConsumers();
+
+.. testoutput::
+
+   [1, 7, 93]
+
+Python Side:
+
+.. code-block:: python
+
+    import jpype
+    import pyarrow as pa
+    from pyarrow.cffi import ffi
+
+    jvmargs=["-Darrow.memory.debug.allocator=true"]
+    jpype.startJVM(*jvmargs, jvmpath=jpype.getDefaultJVMPath(), classpath=[
+        
"./target/java-python-by-cdata-1.0-SNAPSHOT-jar-with-dependencies.jar"])
+    java_value_vector_api = jpype.JClass('ShareValueVectorAPI')
+    java_c_package = jpype.JPackage("org").apache.arrow.c
+    py_c_schema = ffi.new("struct ArrowSchema*")
+    py_ptr_schema = int(ffi.cast("uintptr_t", py_c_schema))
+    py_c_array = ffi.new("struct ArrowArray*")
+    py_ptr_array = int(ffi.cast("uintptr_t", py_c_array))
+    java_wrapped_schema = java_c_package.ArrowSchema.wrap(py_ptr_schema)
+    java_wrapped_array = java_c_package.ArrowArray.wrap(py_ptr_array)
+    java_c_package.Data.exportVector(
+        java_value_vector_api.getAllocatorForJavaConsumers(),
+        java_value_vector_api.getIntVectorForJavaConsumers(),
+        None,
+        java_wrapped_array,
+        java_wrapped_schema
+    )
+    py_array = pa.Array._import_from_c(py_ptr_array, py_ptr_schema)
+    print(type(py_array))
+    print(py_array)
+
+.. code-block:: shell
+
+    <class 'pyarrow.lib.Int32Array'>
+    [
+      1,
+      7,
+      93
+    ]
+
+Sharing VectorSchemaRoot
+************************
+
+Java Side:
+
+.. testcode::
+
+    import org.apache.arrow.c.ArrowArray;
+    import org.apache.arrow.c.ArrowSchema;
+    import org.apache.arrow.c.Data;
+    import org.apache.arrow.memory.BufferAllocator;
+    import org.apache.arrow.memory.RootAllocator;
+    import org.apache.arrow.util.AutoCloseables;
+    import org.apache.arrow.vector.IntVector;
+    import org.apache.arrow.vector.VectorSchemaRoot;
+    import org.apache.arrow.vector.types.pojo.ArrowType;
+    import org.apache.arrow.vector.types.pojo.Field;
+    import org.apache.arrow.vector.types.pojo.FieldType;
+    import org.apache.arrow.vector.types.pojo.Schema;
+
+    import static java.util.Arrays.asList;
+
+    public class ShareVectorSchemaRootAPI {
+      final static BufferAllocator allocator = new RootAllocator();
+      final static Field column_one = new Field("column-one", 
FieldType.nullable(new ArrowType.Int(32, true)), null);
+      final static Schema schema = new Schema(asList(column_one));
+      final static VectorSchemaRoot root = VectorSchemaRoot.create(schema, 
allocator);
+
+      public static BufferAllocator getAllocatorForJavaConsumers() {
+        return allocator;
+      }
+
+      public static VectorSchemaRoot getVectorSchemaRootForJavaConsumers() {
+        IntVector intVector = (IntVector) root.getVector(0);
+        root.allocateNew();
+        intVector.set(0, 100);
+        intVector.set(1, 20);
+        root.setRowCount(2);
+        return root;
+      }
+
+      public static void closeAllocatorForJavaConsumers() {
+        try {
+          AutoCloseables.close(AutoCloseables.iter(root));
+        } catch (Exception e) {
+          throw new RuntimeException(e);
+        }
+      }
+
+      public static void simulateAsAJavaConsumers() {
+        try (ArrowArray arrowArray = ArrowArray.allocateNew(allocator);
+             ArrowSchema arrowSchema = ArrowSchema.allocateNew(allocator)
+        ) {
+          Data.exportVectorSchemaRoot(allocator, 
getVectorSchemaRootForJavaConsumers(), null, arrowArray, arrowSchema);
+          try (VectorSchemaRoot root = Data.importVectorSchemaRoot(allocator, 
arrowArray, arrowSchema, null);) {
+            System.out.print(root.contentToTSVString());
+          }
+        }
+        closeAllocatorForJavaConsumers();
+        allocator.close();
+      }
+    }
+
+    ShareVectorSchemaRootAPI.simulateAsAJavaConsumers();
+
+.. testoutput::
+
+    column-one
+    100
+    20
+
+Python Side:
+
+.. code-block:: python
+
+    import jpype
+    import pyarrow as pa
+    from pyarrow.cffi import ffi
+
+    jvmargs=["-Darrow.memory.debug.allocator=true"]
+    jpype.startJVM(*jvmargs, jvmpath=jpype.getDefaultJVMPath(), classpath=[
+        
"./target/java-python-by-cdata-1.0-SNAPSHOT-jar-with-dependencies.jar"])

Review Comment:
   It would be nice to leave a comment regarding the jar we have mentioned 
here. 



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: github-unsubscr...@arrow.apache.org

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org

Reply via email to