AlenkaF commented on code in PR #48648:
URL: https://github.com/apache/arrow/pull/48648#discussion_r2667991632


##########
python/pyarrow/_compute_docstrings.py:
##########
@@ -54,3 +54,105 @@
     >>> modes[1]
     <pyarrow.StructScalar: [('mode', 1), ('count', 2)]>
     """
+
+function_doc_additions["min"] = """
+    Examples
+    --------
+    >>> import pyarrow as pa
+    >>> import pyarrow.compute as pc
+    >>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
+    >>> pc.min(arr1)
+    <pyarrow.Int64Scalar: 1>
+
+    Using `skip_nulls` to handle null values.

Review Comment:
   ```suggestion
       Using ``skip_nulls`` to handle null values.
   ```



##########
python/pyarrow/tests/test_compute.py:
##########
@@ -883,6 +883,38 @@ def test_generated_docstrings():
             Alternative way of passing options.
         memory_pool : pyarrow.MemoryPool, optional
             If not passed, will allocate memory from the default memory pool.
+
+        Examples
+        --------
+        >>> import pyarrow as pa
+        >>> import pyarrow.compute as pc
+        >>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
+        >>> pc.min_max(arr1)
+        <pyarrow.StructScalar: [('min', 1), ('max', 3)]>
+
+        Using `skip_nulls` to handle null values.
+
+        >>> arr2 = pa.array([1.0, None, 2.0, 3.0])
+        >>> pc.min_max(arr2)
+        <pyarrow.StructScalar: [('min', 1.0), ('max', 3.0)]>
+        >>> pc.min_max(arr2, skip_nulls=False)
+        <pyarrow.StructScalar: [('min', None), ('max', None)]>
+
+        Using `ScalarAggregateOptions` to control minimum number of non-null 
values.

Review Comment:
   ```suggestion
           Using ``ScalarAggregateOptions`` to control minimum number of 
non-null values.
   ```



##########
python/pyarrow/_compute_docstrings.py:
##########
@@ -54,3 +54,105 @@
     >>> modes[1]
     <pyarrow.StructScalar: [('mode', 1), ('count', 2)]>
     """
+
+function_doc_additions["min"] = """
+    Examples
+    --------
+    >>> import pyarrow as pa
+    >>> import pyarrow.compute as pc
+    >>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
+    >>> pc.min(arr1)
+    <pyarrow.Int64Scalar: 1>
+
+    Using `skip_nulls` to handle null values.
+
+    >>> arr2 = pa.array([1.0, None, 2.0, 3.0])
+    >>> pc.min(arr2)
+    <pyarrow.DoubleScalar: 1.0>
+    >>> pc.min(arr2, skip_nulls=False)
+    <pyarrow.DoubleScalar: None>
+
+    Using `ScalarAggregateOptions` to control minimum number of non-null 
values.
+
+    >>> arr3 = pa.array([1.0, None, float("nan"), 3.0])
+    >>> pc.min(arr3)
+    <pyarrow.DoubleScalar: 1.0>
+    >>> pc.min(arr3, options=pc.ScalarAggregateOptions(min_count=3))
+    <pyarrow.DoubleScalar: 1.0>
+    >>> pc.min(arr3, options=pc.ScalarAggregateOptions(min_count=4))
+    <pyarrow.DoubleScalar: None>
+
+    This function also works with string values.
+
+    >>> arr4 = pa.array(["z", None, "y", "x"])
+    >>> pc.min(arr4)
+    <pyarrow.StringScalar: 'x'>
+    """
+
+function_doc_additions["max"] = """
+    Examples
+    --------
+    >>> import pyarrow as pa
+    >>> import pyarrow.compute as pc
+    >>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
+    >>> pc.max(arr1)
+    <pyarrow.Int64Scalar: 3>
+
+    Using `skip_nulls` to handle null values.
+
+    >>> arr2 = pa.array([1.0, None, 2.0, 3.0])
+    >>> pc.max(arr2)
+    <pyarrow.DoubleScalar: 3.0>
+    >>> pc.max(arr2, skip_nulls=False)
+    <pyarrow.DoubleScalar: None>
+
+    Using `ScalarAggregateOptions` to control minimum number of non-null 
values.
+
+    >>> arr3 = pa.array([1.0, None, float("nan"), 3.0])
+    >>> pc.max(arr3)
+    <pyarrow.DoubleScalar: 3.0>
+    >>> pc.max(arr3, options=pc.ScalarAggregateOptions(min_count=3))
+    <pyarrow.DoubleScalar: 3.0>
+    >>> pc.max(arr3, options=pc.ScalarAggregateOptions(min_count=4))
+    <pyarrow.DoubleScalar: None>
+
+    This function also works with string values.
+
+    >>> arr4 = pa.array(["z", None, "y", "x"])
+    >>> pc.max(arr4)
+    <pyarrow.StringScalar: 'z'>
+    """
+
+function_doc_additions["min_max"] = """
+    Examples
+    --------
+    >>> import pyarrow as pa
+    >>> import pyarrow.compute as pc
+    >>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
+    >>> pc.min_max(arr1)
+    <pyarrow.StructScalar: [('min', 1), ('max', 3)]>
+
+    Using `skip_nulls` to handle null values.

Review Comment:
   ```suggestion
       Using ``skip_nulls`` to handle null values.
   ```



##########
python/pyarrow/_compute_docstrings.py:
##########
@@ -54,3 +54,105 @@
     >>> modes[1]
     <pyarrow.StructScalar: [('mode', 1), ('count', 2)]>
     """
+
+function_doc_additions["min"] = """
+    Examples
+    --------
+    >>> import pyarrow as pa
+    >>> import pyarrow.compute as pc
+    >>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
+    >>> pc.min(arr1)
+    <pyarrow.Int64Scalar: 1>
+
+    Using `skip_nulls` to handle null values.
+
+    >>> arr2 = pa.array([1.0, None, 2.0, 3.0])
+    >>> pc.min(arr2)
+    <pyarrow.DoubleScalar: 1.0>
+    >>> pc.min(arr2, skip_nulls=False)
+    <pyarrow.DoubleScalar: None>
+
+    Using `ScalarAggregateOptions` to control minimum number of non-null 
values.

Review Comment:
   ```suggestion
       Using ``ScalarAggregateOptions`` to control minimum number of non-null 
values.
   ```



##########
python/pyarrow/tests/test_compute.py:
##########
@@ -883,6 +883,38 @@ def test_generated_docstrings():
             Alternative way of passing options.
         memory_pool : pyarrow.MemoryPool, optional
             If not passed, will allocate memory from the default memory pool.
+
+        Examples
+        --------
+        >>> import pyarrow as pa
+        >>> import pyarrow.compute as pc
+        >>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
+        >>> pc.min_max(arr1)
+        <pyarrow.StructScalar: [('min', 1), ('max', 3)]>
+
+        Using `skip_nulls` to handle null values.

Review Comment:
   ```suggestion
           Using ``skip_nulls`` to handle null values.
   ```



##########
python/pyarrow/_compute_docstrings.py:
##########
@@ -54,3 +54,105 @@
     >>> modes[1]
     <pyarrow.StructScalar: [('mode', 1), ('count', 2)]>
     """
+
+function_doc_additions["min"] = """
+    Examples
+    --------
+    >>> import pyarrow as pa
+    >>> import pyarrow.compute as pc
+    >>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
+    >>> pc.min(arr1)
+    <pyarrow.Int64Scalar: 1>
+
+    Using `skip_nulls` to handle null values.
+
+    >>> arr2 = pa.array([1.0, None, 2.0, 3.0])
+    >>> pc.min(arr2)
+    <pyarrow.DoubleScalar: 1.0>
+    >>> pc.min(arr2, skip_nulls=False)
+    <pyarrow.DoubleScalar: None>
+
+    Using `ScalarAggregateOptions` to control minimum number of non-null 
values.
+
+    >>> arr3 = pa.array([1.0, None, float("nan"), 3.0])
+    >>> pc.min(arr3)
+    <pyarrow.DoubleScalar: 1.0>
+    >>> pc.min(arr3, options=pc.ScalarAggregateOptions(min_count=3))
+    <pyarrow.DoubleScalar: 1.0>
+    >>> pc.min(arr3, options=pc.ScalarAggregateOptions(min_count=4))
+    <pyarrow.DoubleScalar: None>
+
+    This function also works with string values.
+
+    >>> arr4 = pa.array(["z", None, "y", "x"])
+    >>> pc.min(arr4)
+    <pyarrow.StringScalar: 'x'>
+    """
+
+function_doc_additions["max"] = """
+    Examples
+    --------
+    >>> import pyarrow as pa
+    >>> import pyarrow.compute as pc
+    >>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
+    >>> pc.max(arr1)
+    <pyarrow.Int64Scalar: 3>
+
+    Using `skip_nulls` to handle null values.
+
+    >>> arr2 = pa.array([1.0, None, 2.0, 3.0])
+    >>> pc.max(arr2)
+    <pyarrow.DoubleScalar: 3.0>
+    >>> pc.max(arr2, skip_nulls=False)
+    <pyarrow.DoubleScalar: None>
+
+    Using `ScalarAggregateOptions` to control minimum number of non-null 
values.

Review Comment:
   ```suggestion
       Using ``ScalarAggregateOptions`` to control minimum number of non-null 
values.
   ```



##########
python/pyarrow/_compute_docstrings.py:
##########
@@ -54,3 +54,105 @@
     >>> modes[1]
     <pyarrow.StructScalar: [('mode', 1), ('count', 2)]>
     """
+
+function_doc_additions["min"] = """
+    Examples
+    --------
+    >>> import pyarrow as pa
+    >>> import pyarrow.compute as pc
+    >>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
+    >>> pc.min(arr1)
+    <pyarrow.Int64Scalar: 1>
+
+    Using `skip_nulls` to handle null values.
+
+    >>> arr2 = pa.array([1.0, None, 2.0, 3.0])
+    >>> pc.min(arr2)
+    <pyarrow.DoubleScalar: 1.0>
+    >>> pc.min(arr2, skip_nulls=False)
+    <pyarrow.DoubleScalar: None>
+
+    Using `ScalarAggregateOptions` to control minimum number of non-null 
values.
+
+    >>> arr3 = pa.array([1.0, None, float("nan"), 3.0])
+    >>> pc.min(arr3)
+    <pyarrow.DoubleScalar: 1.0>
+    >>> pc.min(arr3, options=pc.ScalarAggregateOptions(min_count=3))
+    <pyarrow.DoubleScalar: 1.0>
+    >>> pc.min(arr3, options=pc.ScalarAggregateOptions(min_count=4))
+    <pyarrow.DoubleScalar: None>
+
+    This function also works with string values.
+
+    >>> arr4 = pa.array(["z", None, "y", "x"])
+    >>> pc.min(arr4)
+    <pyarrow.StringScalar: 'x'>
+    """
+
+function_doc_additions["max"] = """
+    Examples
+    --------
+    >>> import pyarrow as pa
+    >>> import pyarrow.compute as pc
+    >>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
+    >>> pc.max(arr1)
+    <pyarrow.Int64Scalar: 3>
+
+    Using `skip_nulls` to handle null values.

Review Comment:
   ```suggestion
       Using ``skip_nulls`` to handle null values.
   ```



##########
python/pyarrow/_compute_docstrings.py:
##########
@@ -54,3 +54,105 @@
     >>> modes[1]
     <pyarrow.StructScalar: [('mode', 1), ('count', 2)]>
     """
+
+function_doc_additions["min"] = """
+    Examples
+    --------
+    >>> import pyarrow as pa
+    >>> import pyarrow.compute as pc
+    >>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
+    >>> pc.min(arr1)
+    <pyarrow.Int64Scalar: 1>
+
+    Using `skip_nulls` to handle null values.
+
+    >>> arr2 = pa.array([1.0, None, 2.0, 3.0])
+    >>> pc.min(arr2)
+    <pyarrow.DoubleScalar: 1.0>
+    >>> pc.min(arr2, skip_nulls=False)
+    <pyarrow.DoubleScalar: None>
+
+    Using `ScalarAggregateOptions` to control minimum number of non-null 
values.
+
+    >>> arr3 = pa.array([1.0, None, float("nan"), 3.0])
+    >>> pc.min(arr3)
+    <pyarrow.DoubleScalar: 1.0>
+    >>> pc.min(arr3, options=pc.ScalarAggregateOptions(min_count=3))
+    <pyarrow.DoubleScalar: 1.0>
+    >>> pc.min(arr3, options=pc.ScalarAggregateOptions(min_count=4))
+    <pyarrow.DoubleScalar: None>
+
+    This function also works with string values.
+
+    >>> arr4 = pa.array(["z", None, "y", "x"])
+    >>> pc.min(arr4)
+    <pyarrow.StringScalar: 'x'>
+    """
+
+function_doc_additions["max"] = """
+    Examples
+    --------
+    >>> import pyarrow as pa
+    >>> import pyarrow.compute as pc
+    >>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
+    >>> pc.max(arr1)
+    <pyarrow.Int64Scalar: 3>
+
+    Using `skip_nulls` to handle null values.
+
+    >>> arr2 = pa.array([1.0, None, 2.0, 3.0])
+    >>> pc.max(arr2)
+    <pyarrow.DoubleScalar: 3.0>
+    >>> pc.max(arr2, skip_nulls=False)
+    <pyarrow.DoubleScalar: None>
+
+    Using `ScalarAggregateOptions` to control minimum number of non-null 
values.
+
+    >>> arr3 = pa.array([1.0, None, float("nan"), 3.0])
+    >>> pc.max(arr3)
+    <pyarrow.DoubleScalar: 3.0>
+    >>> pc.max(arr3, options=pc.ScalarAggregateOptions(min_count=3))
+    <pyarrow.DoubleScalar: 3.0>
+    >>> pc.max(arr3, options=pc.ScalarAggregateOptions(min_count=4))
+    <pyarrow.DoubleScalar: None>
+
+    This function also works with string values.
+
+    >>> arr4 = pa.array(["z", None, "y", "x"])
+    >>> pc.max(arr4)
+    <pyarrow.StringScalar: 'z'>
+    """
+
+function_doc_additions["min_max"] = """
+    Examples
+    --------
+    >>> import pyarrow as pa
+    >>> import pyarrow.compute as pc
+    >>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
+    >>> pc.min_max(arr1)
+    <pyarrow.StructScalar: [('min', 1), ('max', 3)]>
+
+    Using `skip_nulls` to handle null values.
+
+    >>> arr2 = pa.array([1.0, None, 2.0, 3.0])
+    >>> pc.min_max(arr2)
+    <pyarrow.StructScalar: [('min', 1.0), ('max', 3.0)]>
+    >>> pc.min_max(arr2, skip_nulls=False)
+    <pyarrow.StructScalar: [('min', None), ('max', None)]>
+
+    Using `ScalarAggregateOptions` to control minimum number of non-null 
values.

Review Comment:
   ```suggestion
       Using ``ScalarAggregateOptions`` to control minimum number of non-null 
values.
   ```



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to