yeandy commented on code in PR #21766:
URL: https://github.com/apache/beam/pull/21766#discussion_r895867087


##########
sdks/python/apache_beam/examples/inference/pytorch_image_segmentation.py:
##########
@@ -0,0 +1,244 @@
+#
+# Licensed to the Apache Software Foundation (ASF) under one or more
+# contributor license agreements.  See the NOTICE file distributed with
+# this work for additional information regarding copyright ownership.
+# The ASF licenses this file to You under the Apache License, Version 2.0
+# (the "License"); you may not use this file except in compliance with
+# the License.  You may obtain a copy of the License at
+#
+#    http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+"""A pipeline that uses RunInference API to perform image segmentation."""
+
+import argparse
+import io
+import os
+from typing import Iterable
+from typing import Optional
+from typing import Tuple
+
+import apache_beam as beam
+import torch
+from apache_beam.io.filesystems import FileSystems
+from apache_beam.ml.inference.api import PredictionResult
+from apache_beam.ml.inference.api import RunInference
+from apache_beam.ml.inference.pytorch_inference import PytorchModelHandler
+from apache_beam.options.pipeline_options import PipelineOptions
+from apache_beam.options.pipeline_options import SetupOptions
+from PIL import Image
+from torchvision import transforms
+from torchvision.models.detection import maskrcnn_resnet50_fpn
+
+COCO_INSTANCE_CLASSES = [
+    '__background__',
+    'person',
+    'bicycle',
+    'car',
+    'motorcycle',
+    'airplane',
+    'bus',
+    'train',
+    'truck',
+    'boat',
+    'traffic light',
+    'fire hydrant',
+    'N/A',
+    'stop sign',
+    'parking meter',
+    'bench',
+    'bird',
+    'cat',
+    'dog',
+    'horse',
+    'sheep',
+    'cow',
+    'elephant',
+    'bear',
+    'zebra',
+    'giraffe',
+    'N/A',
+    'backpack',
+    'umbrella',
+    'N/A',
+    'N/A',
+    'handbag',
+    'tie',
+    'suitcase',
+    'frisbee',
+    'skis',
+    'snowboard',
+    'sports ball',
+    'kite',
+    'baseball bat',
+    'baseball glove',
+    'skateboard',
+    'surfboard',
+    'tennis racket',
+    'bottle',
+    'N/A',
+    'wine glass',
+    'cup',
+    'fork',
+    'knife',
+    'spoon',
+    'bowl',
+    'banana',
+    'apple',
+    'sandwich',
+    'orange',
+    'broccoli',
+    'carrot',
+    'hot dog',
+    'pizza',
+    'donut',
+    'cake',
+    'chair',
+    'couch',
+    'potted plant',
+    'bed',
+    'N/A',
+    'dining table',
+    'N/A',
+    'N/A',
+    'toilet',
+    'N/A',
+    'tv',
+    'laptop',
+    'mouse',
+    'remote',
+    'keyboard',
+    'cell phone',
+    'microwave',
+    'oven',
+    'toaster',
+    'sink',
+    'refrigerator',
+    'N/A',
+    'book',
+    'clock',
+    'vase',
+    'scissors',
+    'teddy bear',
+    'hair drier',
+    'toothbrush'
+]
+
+CLASS_ID_TO_NAME = dict(enumerate(COCO_INSTANCE_CLASSES))
+
+
+def read_image(image_file_name: str,
+               path_to_dir: Optional[str] = None) -> Tuple[str, Image.Image]:
+  if path_to_dir is not None:
+    image_file_name = os.path.join(path_to_dir, image_file_name)
+  with FileSystems().open(image_file_name, 'r') as file:
+    data = Image.open(io.BytesIO(file.read())).convert('RGB')
+    return image_file_name, data
+
+
+def preprocess_image(data: Image.Image) -> torch.Tensor:
+  image_size = (224, 224)
+  # Pre-trained PyTorch models expect input images normalized with the
+  # below values (see: https://pytorch.org/vision/stable/models.html)
+  normalize = transforms.Normalize(
+      mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
+  transform = transforms.Compose([
+      transforms.Resize(image_size),
+      transforms.ToTensor(),
+      normalize,
+  ])
+  return transform(data)
+
+
+class PostProcessor(beam.DoFn):
+  def process(self, element: Tuple[str, PredictionResult]) -> Iterable[str]:
+    filename, prediction_result = element
+    prediction_labels = prediction_result.inference['labels']
+    classes = [CLASS_ID_TO_NAME[label.item()] for label in prediction_labels]
+    yield filename + ';' + str(classes)
+
+
+def parse_known_args(argv):
+  """Parses args for the workflow."""
+  parser = argparse.ArgumentParser()
+  parser.add_argument(
+      '--input',
+      dest='input',
+      default='gs://apache-beam-ml/testing/inputs/'
+      'it_coco_validation_inputs.txt',
+      help='Path to the text file containing image names.')
+  parser.add_argument(
+      '--output',
+      dest='output',
+      help='Path where to save output predictions.'
+      ' text file.')
+  parser.add_argument(
+      '--model_state_dict_path',
+      dest='model_state_dict_path',
+      default='gs://apache-beam-ml/'
+      'models/torchvision.models.detection.maskrcnn_resnet50_fpn.pth',
+      help="Path to the model's state_dict. "
+      "Default state_dict would be maskrcnn_resnet50_fpn.")
+  parser.add_argument(
+      '--images_dir',
+      default='gs://apache-beam-ml/datasets/coco/raw-data/val2017',
+      help='Path to the directory where images are stored.'
+      'Not required if image names in the input file have absolute path.')
+  return parser.parse_known_args(argv)
+
+
+def run(argv=None, model_class=None, model_params=None, 
save_main_session=True):
+  """
+  Args:
+    argv: Command line arguments defined for this example.
+    model_class: Reference to the class definition of the model.
+                If None, maskrcnn_resnet50_fpn will be used as default .
+    model_params: Parameters passed to the constructor of the model_class.
+                  These will be used to instantiate the model object in the
+                  RunInference API.
+  """
+  known_args, pipeline_args = parse_known_args(argv)
+  pipeline_options = PipelineOptions(pipeline_args)
+  pipeline_options.view_as(SetupOptions).save_main_session = save_main_session
+
+  if not model_class:
+    model_class = maskrcnn_resnet50_fpn
+    model_params = {'num_classes': 91}
+
+  model_handler = PytorchModelHandler(

Review Comment:
   Added.



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to