CuteChuanChuan commented on code in PR #19994:
URL: https://github.com/apache/datafusion/pull/19994#discussion_r2749732276
##########
datafusion/physical-expr/benches/case_when.rs:
##########
@@ -517,5 +519,106 @@ fn benchmark_lookup_table_case_when(c: &mut Criterion,
batch_size: usize) {
}
}
+fn benchmark_divide_by_zero_protection(c: &mut Criterion, batch_size: usize) {
+ let mut group = c.benchmark_group("divide_by_zero_protection");
+
+ for zero_percentage in [0.0, 0.1, 0.5, 0.9] {
+ let rng = &mut seedable_rng();
+
+ let numerator: Int32Array =
+ (0..batch_size).map(|_| Some(rng.random::<i32>())).collect();
+
+ let divisor_values: Vec<Option<i32>> = (0..batch_size)
+ .map(|_| {
+ let roll: f32 = rng.random();
+ if roll < zero_percentage {
+ Some(0)
+ } else {
+ let mut val = rng.random::<i32>();
+ while val == 0 {
+ val = rng.random::<i32>();
+ }
+ Some(val)
+ }
+ })
+ .collect();
+
+ let divisor: Int32Array = divisor_values.iter().cloned().collect();
+ let divisor_copy: Int32Array =
divisor_values.iter().cloned().collect();
+
+ let schema = Arc::new(Schema::new(vec![
+ Field::new("numerator", numerator.data_type().clone(), true),
+ Field::new("divisor", divisor.data_type().clone(), true),
+ Field::new("divisor_copy", divisor_copy.data_type().clone(), true),
+ ]));
+
+ let batch = RecordBatch::try_new(
+ Arc::clone(&schema),
+ vec![
+ Arc::new(numerator),
+ Arc::new(divisor),
+ Arc::new(divisor_copy),
+ ],
+ )
+ .unwrap();
+
+ let numerator_col = col("numerator", &batch.schema()).unwrap();
+ let divisor_col = col("divisor", &batch.schema()).unwrap();
+ let divisor_copy_col = col("divisor_copy", &batch.schema()).unwrap();
+
+ group.bench_function(
+ format!(
+ "{} rows, {}% zeros: DivideByZeroProtection",
+ batch_size,
+ (zero_percentage * 100.0) as i32
+ ),
+ |b| {
+ let when = Arc::new(BinaryExpr::new(
+ Arc::clone(&divisor_col),
+ Operator::Gt,
+ lit(0i32),
+ ));
+ let then = Arc::new(BinaryExpr::new(
+ Arc::clone(&numerator_col),
+ Operator::Divide,
+ Arc::clone(&divisor_col),
+ ));
+ let else_null: Arc<dyn PhysicalExpr> =
lit(ScalarValue::Int32(None));
+ let expr =
+ Arc::new(case(None, vec![(when, then)],
Some(else_null)).unwrap());
+
+ b.iter(|| black_box(expr.evaluate(black_box(&batch)).unwrap()))
+ },
+ );
+
+ group.bench_function(
Review Comment:
Hi @pepijnve,
I think the performance gap might come from execution model differences.
Please correct me if I am wrong.
**ExprOrExpr**: evaluate condition → build selection → execute on selected
rows → merge
**DivideByZeroProtection**: fully vectorized Arrow kernels
The vectorized path avoids selection/branching overhead, which is why it
wins when most rows need computation (low zero density). However, ExprOrExpr's
short-circuit helps when many rows are filtered (high zero density).
Although I don't have concrete ideas about potential ExprOrExpr improvements
for this pattern yet, I'd be happy to explore further if you have any
suggestions!
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]