alihan-synnada commented on code in PR #12531:
URL: https://github.com/apache/datafusion/pull/12531#discussion_r1768251737


##########
datafusion/physical-plan/src/joins/nested_loop_join.rs:
##########
@@ -456,21 +458,72 @@ struct NestedLoopJoinStream {
     // null_equals_null: bool
     /// Join execution metrics
     join_metrics: BuildProbeJoinMetrics,
+    /// Cache for join indices calculations
+    indices_cache: (UInt64Array, UInt32Array),
 }
 
+/// Creates a Cartesian product of two input batches, preserving the order of 
the right batch,
+/// and applying a join filter if provided.
+///
+/// # Example
+/// Input:
+/// left = [0, 1], right = [0, 1, 2]
+///
+/// Output:
+/// left_indices = [0, 1, 0, 1, 0, 1], right_indices = [0, 0, 1, 1, 2, 2]
+///
+/// Input:
+/// left = [0, 1, 2], right = [0, 1, 2, 3], filter = left.a != right.a
+///
+/// Output:
+/// left_indices = [1, 2, 0, 2, 0, 1, 0, 1, 2], right_indices = [0, 0, 1, 1, 
2, 2, 3, 3, 3]
 fn build_join_indices(
-    right_row_index: usize,
     left_batch: &RecordBatch,
     right_batch: &RecordBatch,
     filter: Option<&JoinFilter>,
+    indices_cache: &mut (UInt64Array, UInt32Array),
 ) -> Result<(UInt64Array, UInt32Array)> {
-    // left indices: [0, 1, 2, 3, 4, ..., left_row_count]
-    // right indices: [right_index, right_index, ..., right_index]
-
     let left_row_count = left_batch.num_rows();
-    let left_indices = UInt64Array::from_iter_values(0..(left_row_count as 
u64));
-    let right_indices = UInt32Array::from(vec![right_row_index as u32; 
left_row_count]);
-    // in the nested loop join, the filter can contain non-equal and equal 
condition.
+    let right_row_count = right_batch.num_rows();
+    let output_row_count = left_row_count * right_row_count;
+
+    // We always use the same indices before applying the filter, so we can 
cache them
+    let (left_indices_cache, right_indices_cache) = indices_cache;
+    let cached_output_row_count = left_indices_cache.len();

Review Comment:
   The chunks approach didn't change the performance, but it helped reduce the 
sizes of the intermediate batches. The 10% performance hit without a cache 
comes from the way the arrays are constructed and I couldn't find a faster 
approach for now. I suggest we go with the cached approach for now. When the 
issue that enables NLJ to emit massive batches is implemented, we can choose 
between the cached and chunked approaches depending on NLJ's output size. I'll 
open an issue about it



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: github-unsubscr...@datafusion.apache.org

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


---------------------------------------------------------------------
To unsubscribe, e-mail: github-unsubscr...@datafusion.apache.org
For additional commands, e-mail: github-h...@datafusion.apache.org

Reply via email to