andygrove opened a new issue, #3111:
URL: https://github.com/apache/datafusion-comet/issues/3111
## What is the problem the feature request solves?
> **Note:** This issue was generated with AI assistance. The specification
details have been extracted from Spark documentation and may need verification.
Comet does not currently support the Spark `seconds_to_timestamp` function,
causing queries using this function to fall back to Spark's JVM execution
instead of running natively on DataFusion.
The `SecondsToTimestamp` expression converts numeric values representing
seconds since Unix epoch (1970-01-01 00:00:00 UTC) into timestamp values. It
supports various numeric data types and handles the conversion by multiplying
the input value by the number of microseconds per second to produce a timestamp
in Spark's internal microsecond representation.
Supporting this expression would allow more Spark workloads to benefit from
Comet's native acceleration.
## Describe the potential solution
### Spark Specification
**Syntax:**
```sql
timestamp_seconds(seconds)
```
```scala
// DataFrame API
import org.apache.spark.sql.functions._
col("seconds_column").cast(TimestampType)
// or using the function name
expr("timestamp_seconds(seconds_column)")
```
**Arguments:**
| Argument | Type | Description |
|----------|------|-------------|
| seconds | Numeric | The number of seconds since Unix epoch (1970-01-01
00:00:00 UTC) to convert to timestamp |
**Return Type:** `TimestampType` - Returns a timestamp value representing
the specified number of seconds since Unix epoch.
**Supported Data Types:**
- IntegralType (Byte, Short, Integer, Long)
- DecimalType
- FloatType
- DoubleType
**Edge Cases:**
- **Null handling**: Expression is null-intolerant, meaning null inputs
produce null outputs
- **Float/Double special values**: NaN and Infinite values in float/double
inputs return null instead of throwing exceptions
- **Overflow protection**: Integral types use `Math.multiplyExact()` and
decimal types use `longValueExact()` to detect arithmetic overflow
- **Precision handling**: Decimal inputs maintain precision through
`BigDecimal` arithmetic before final conversion
- **Nullable behavior**: Float and Double inputs make the result nullable
due to potential NaN/Infinite handling; other numeric types inherit nullability
from the child expression
**Examples:**
```sql
-- Convert integer seconds to timestamp
SELECT timestamp_seconds(1640995200) as converted_timestamp;
-- Result: 2021-12-31 16:00:00
-- Convert decimal seconds to timestamp
SELECT timestamp_seconds(1640995200.123) as converted_timestamp;
-- Result: 2021-12-31 16:00:00.123
-- Handle null input
SELECT timestamp_seconds(null) as converted_timestamp;
-- Result: null
```
```scala
// DataFrame API usage
import org.apache.spark.sql.functions._
// Convert seconds column to timestamp
df.select(expr("timestamp_seconds(epoch_seconds)").as("converted_timestamp"))
// Using with literal values
df.select(expr("timestamp_seconds(1640995200)").as("converted_timestamp"))
// Handle floating point seconds
df.select(expr("timestamp_seconds(1640995200.123)").as("converted_timestamp"))
```
### Implementation Approach
See the [Comet guide on adding new
expressions](https://datafusion.apache.org/comet/contributor-guide/adding_a_new_expression.html)
for detailed instructions.
1. **Scala Serde**: Add expression handler in
`spark/src/main/scala/org/apache/comet/serde/`
2. **Register**: Add to appropriate map in `QueryPlanSerde.scala`
3. **Protobuf**: Add message type in `native/proto/src/proto/expr.proto` if
needed
4. **Rust**: Implement in `native/spark-expr/src/` (check if DataFusion has
built-in support first)
## Additional context
**Difficulty:** Medium
**Spark Expression Class:**
`org.apache.spark.sql.catalyst.expressions.SecondsToTimestamp`
**Related:**
- `TimestampToSeconds` - Converts timestamps back to seconds since epoch
- `UnixTimestamp` - Similar functionality with different precision handling
- `FromUnixTime` - Converts Unix timestamp to formatted string
- `ToTimestamp` - Converts string to timestamp with format parsing
---
*This issue was auto-generated from Spark reference documentation.*
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]