ni...@lysator.liu.se (Niels Möller) writes: > Below is one variant, that seems to pass tests. I haven't done any > benchmarks yet.
Just gave it a try with tune/speed, together with all the latest div1 variants. This one on my laptop, and not looking that great: $ ./tune/speed -c -s1 -p100000 mpn_hgcd2_1 mpn_hgcd2_2 mpn_hgcd2_3 mpn_hgcd2_4 mpn_hgcd2_5 mpn_hgcd2_binary overhead 6.02 cycles, precision 100000 units of 8.33e-10 secs, CPU freq 1200.00 MHz mpn_hgcd2_1 mpn_hgcd2_2 mpn_hgcd2_3 mpn_hgcd2_4 mpn_hgcd2_5 mpn_hgcd2_binary 1 #1668.90 1863.72 1670.73 1757.54 1738.50 2044.25 Had a look at the disassembly for the binary algorithm. The double-precision loop needs, 20 instructions for just the conditional swap logic, 23 for the clz + shift + subtract, 8 for the shift+add updates of the u matrix. By doing another conditional subtraction in each iteration, I get down to 1865 cycles. See below version. In the case acnt == bcnt, the condition for this is always false. But when acnt < bcnt, we have 2^{k-1} <= a < 2^k 2^{k-2} <= (2^s b) < 2^{k-1} so floor (a / (b 2^s) can be 1, 2, or 3. So one could consider yet another conditional subtraction (but then q = 3 2^s is no longer just a single shift and add). If I also try the SIMD trick, I get down to 1790 cycles, but I'd need a special middle iteration to make it correct. As long as both a,b >= 2^96 (more than one and a half limb), matrix coefficients fit in a half limb. But we don't switch to single precision until a,b < 2^96. So we'll have one or more iterations with a >= 2^96 > b, and there u01 and u11 may exceeed half a limb. May still be worth it to add that middle loop, for 5% speedup. Seems hard to beat method 1 on this hardware, but binary may well be a winner on machines with slow multiply, slow division, but fast count_leading_zeros. Regards, /Niels #define SWAP_MASK(mask, x, y) do { \ mp_limb_t swap_xor = ((x) ^ (y)) & mask; \ (x) ^= swap_xor; \ (y) ^= swap_xor; \ } while (0); int mpn_hgcd2 (mp_limb_t ah, mp_limb_t al, mp_limb_t bh, mp_limb_t bl, struct hgcd_matrix1 *M) { mp_limb_t u00, u01, u10, u11, swapped; if (ah < 2 || bh < 2) return 0; if (ah > bh || (ah == bh && al > bl)) { sub_ddmmss (ah, al, ah, al, bh, bl); if (ah < 2) return 0; u00 = u01 = u11 = 1; u10 = 0; } else { sub_ddmmss (bh, bl, bh, bl, ah, al); if (bh < 2) return 0; u00 = u10 = u11 = 1; u01 = 0; } swapped = 0; for (;;) { mp_limb_t mask, dh, dl; int acnt, bcnt, shift; if (ah == bh) goto done; mask = -(mp_limb_t) (ah < bh); swapped ^= mask; SWAP_MASK (mask, ah, bh); SWAP_MASK (mask, al, bl); SWAP_MASK (mask, u00, u01); SWAP_MASK (mask, u10, u11); ASSERT (ah > bh); if (ah < (CNST_LIMB(1) << (GMP_LIMB_BITS / 2))) { ah = (ah << (GMP_LIMB_BITS / 2) ) + (al >> (GMP_LIMB_BITS / 2)); bh = (bh << (GMP_LIMB_BITS / 2) ) + (bl >> (GMP_LIMB_BITS / 2)); break; } count_leading_zeros (acnt, ah); count_leading_zeros (bcnt, bh); shift = bcnt - acnt; ASSERT (shift >= 0); /* Avoid subtraction underflow */ shift -= (shift > 0); dh = (bh << shift) | ((bl >> 1) >> (GMP_LIMB_BITS - 1 - shift)); dl = bl << shift; sub_ddmmss (ah, al, ah, al, dh, dl); mask = -(mp_limb_t) (ah > dh); shift -= mask; sub_ddmmss (ah, al, ah, al, mask & dh, mask & dl); if (ah < 2) { /* A is too small, so decrement q. */ mp_limb_t q = ((mp_limb_t) 1 << shift) - 1; u01 += q * u00; u11 += q * u10; goto done; } u01 += (u00 << shift); u11 += (u10 << shift); } /* Single-precision loop */ for (;;) { mp_limb_t mask, dh; int acnt, bcnt, shift; if (ah == bh) break; mask = -(mp_limb_t) (ah < bh); swapped ^= mask; SWAP_MASK (mask, ah, bh); SWAP_MASK (mask, u00, u01); SWAP_MASK (mask, u10, u11); ASSERT (ah > bh); count_leading_zeros (acnt, ah); count_leading_zeros (bcnt, bh); shift = bcnt - acnt; ASSERT (shift >= 0); /* Avoid subtraction underflow */ shift -= (shift > 0); dh = bh << shift; ah -= dh; mask = - (mp_limb_t) (ah > dh); shift -= mask; ah -= mask & dh; if (ah < (CNST_LIMB(1) << (GMP_LIMB_BITS / 2 + 1))) { /* A is too small, so decrement q. */ mp_limb_t q = ((mp_limb_t) 1 << shift) - 1; u01 += q * u00; u11 += q * u10; break; } u01 += (u00 << shift); u11 += (u10 << shift); } done: SWAP_MASK (swapped, u00, u01); SWAP_MASK (swapped, u10, u11); ASSERT (u00 * u11 - u01 * u10 == 1); M->u[0][0] = u00; M->u[0][1] = u01; M->u[1][0] = u10; M->u[1][1] = u11; return 1; } -- Niels Möller. PGP-encrypted email is preferred. Keyid 368C6677. Internet email is subject to wholesale government surveillance. _______________________________________________ gmp-devel mailing list gmp-devel@gmplib.org https://gmplib.org/mailman/listinfo/gmp-devel