Moeed wrote:
Dear Justin,

Thanks for your explanation. I am sorry to bother you again. Like you said: "a mole of a given species in the given configuration would have this energy in kJ". This is absolutely clear but actually I think increasing the total energy with system size contradict this statement unless values given by g_energy are in KJ/system. If there are more interactions in a bigger system, as you said eventually values refer to mole number of particles (regardless of number of particles). If there are half Na (avogardo) particles, finally energy is multiplied by 2 to get KJ/mole and if there are 10*Na, g_energy divides total energy by 10. Please enlightem me on this issue. Many thanks


The proper interpretation is related to what I said earlier. The value of energy in kJ/mol for your system would not be "kJ/system" but rather "kJ per mole of that particular system in that particular configuration" In a way your interpretation might be right, but I was hoping to use the microscopic example as a way to provide the underlying rationale.

-Justin

Moeed


--
========================================

Justin A. Lemkul
Ph.D. Candidate
ICTAS Doctoral Scholar
MILES-IGERT Trainee
Department of Biochemistry
Virginia Tech
Blacksburg, VA
jalemkul[at]vt.edu | (540) 231-9080
http://www.bevanlab.biochem.vt.edu/Pages/Personal/justin

========================================
--
gmx-users mailing list    gmx-users@gromacs.org
http://lists.gromacs.org/mailman/listinfo/gmx-users
Please search the archive at http://www.gromacs.org/search before posting!
Please don't post (un)subscribe requests to the list. Use the www interface or send it to gmx-users-requ...@gromacs.org.
Can't post? Read http://www.gromacs.org/mailing_lists/users.php

Reply via email to