Hi Mark,

with FE, without PR : same error
without FE, with PR: stable
without FE, without PR: stable

I've never had this error before.

Logfile says:
[...]
Initializing Domain Decomposition on 2 nodes
Dynamic load balancing: no
Will sort the charge groups at every domain (re)decomposition
Initial maximum inter charge-group distances:
    two-body bonded interactions: 3.341 nm, LJC Pairs NB, atoms 22476 22761
  multi-body bonded interactions: 0.649 nm, Angle, atoms 1668 1686
Minimum cell size due to bonded interactions: 3.675 nm
Using 0 separate PME nodes
Optimizing the DD grid for 2 cells with a minimum initial size of 3.675 nm
The maximum allowed number of cells is: X 1 Y 1 Z 2
Domain decomposition grid 1 x 1 x 2, separate PME nodes 0
PME domain decomposition: 2 x 1 x 1
Domain decomposition nodeid 0, coordinates 0 0 0
[...]
Linking all bonded interactions to atoms
There are 55376 inter charge-group exclusions,
will use an extra communication step for exclusion forces for PME

The initial number of communication pulses is: Z 1
The initial domain decomposition cell size is: Z 5.09 nm

The maximum allowed distance for charge groups involved in interactions is:
                 non-bonded interactions           1.200 nm
            two-body bonded interactions  (-rdd)   4.213 nm
          multi-body bonded interactions  (-rdd)   4.213 nm





There it stops. In the 1-thread case, the second part is replaced by "Initiating Steepest Descents" and then writing out the energies for every step.

Gromacs version is 4.5.5.

I also attached the whole logfile.

Cheers
Sabine




On 03/23/2012 11:52 AM, Mark Abraham wrote:
On 23/03/2012 9:17 PM, Sabine Reisser wrote:
Dear gromacs users/developers,

when trying to couple in a peptide into a membrane with:

; Define position restraints for peptide
define          = -DPOSRES

; couple in peptide
free_energy     = yes
init_lambda     = 0.05
sc_alpha        = 0.7
sc_power        = 1
couple-moltype  = Protein
couple-lambda0  = none
couple-lambda1  = vdw-q


grompp works fine, but mdrun (2 threads) gives me

Making 1D domain decomposition 1 x 1 x 2
*** glibc detected *** mdrun: realloc(): invalid next size:
0x00007f0f30305810 ***

and breaks up.


When running "mdrun -nt 1 " on only one thread, it works fine.

Is this a known bug?
First, is it likely not to be a problem with your setup... is your
system stable in parallel without FE code? Without position restraints?
What does your .log file say? What GROMACS version is it?

Mark

Log file opened on Fri Mar 23 12:07:20 2012
Host: tcbpc170  pid: 4388  nodeid: 0  nnodes:  1
The Gromacs distribution was built Fri Feb 24 15:27:34 CET 2012 by
sabine@tcbpc170 (Linux 2.6.30.10-105.2.23.fc11.x86_64 x86_64)


                         :-)  G  R  O  M  A  C  S  (-:

               Giving Russians Opium May Alter Current Situation

                            :-)  VERSION 4.5.5  (-:

        Written by Emile Apol, Rossen Apostolov, Herman J.C. Berendsen,
      Aldert van Buuren, Pär Bjelkmar, Rudi van Drunen, Anton Feenstra, 
        Gerrit Groenhof, Peter Kasson, Per Larsson, Pieter Meulenhoff, 
           Teemu Murtola, Szilard Pall, Sander Pronk, Roland Schulz, 
                Michael Shirts, Alfons Sijbers, Peter Tieleman,

               Berk Hess, David van der Spoel, and Erik Lindahl.

       Copyright (c) 1991-2000, University of Groningen, The Netherlands.
            Copyright (c) 2001-2010, The GROMACS development team at
        Uppsala University & The Royal Institute of Technology, Sweden.
            check out http://www.gromacs.org for more information.

         This program is free software; you can redistribute it and/or
          modify it under the terms of the GNU General Public License
         as published by the Free Software Foundation; either version 2
             of the License, or (at your option) any later version.

                                :-)  mdrun  (-:


++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
B. Hess and C. Kutzner and D. van der Spoel and E. Lindahl
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable
molecular simulation
J. Chem. Theory Comput. 4 (2008) pp. 435-447
-------- -------- --- Thank You --- -------- --------


++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J. C.
Berendsen
GROMACS: Fast, Flexible and Free
J. Comp. Chem. 26 (2005) pp. 1701-1719
-------- -------- --- Thank You --- -------- --------


++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
E. Lindahl and B. Hess and D. van der Spoel
GROMACS 3.0: A package for molecular simulation and trajectory analysis
J. Mol. Mod. 7 (2001) pp. 306-317
-------- -------- --- Thank You --- -------- --------


++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
H. J. C. Berendsen, D. van der Spoel and R. van Drunen
GROMACS: A message-passing parallel molecular dynamics implementation
Comp. Phys. Comm. 91 (1995) pp. 43-56
-------- -------- --- Thank You --- -------- --------

Input Parameters:
   integrator           = steep
   nsteps               = 100
   init_step            = 0
   ns_type              = Grid
   nstlist              = 1
   ndelta               = 2
   nstcomm              = 10
   comm_mode            = Linear
   nstlog               = 100
   nstxout              = 100
   nstvout              = 100
   nstfout              = 0
   nstcalcenergy        = -1
   nstenergy            = 100
   nstxtcout            = 0
   init_t               = 0
   delta_t              = 0.001
   xtcprec              = 1000
   nkx                  = 45
   nky                  = 45
   nkz                  = 90
   pme_order            = 4
   ewald_rtol           = 1e-05
   ewald_geometry       = 0
   epsilon_surface      = 0
   optimize_fft         = FALSE
   ePBC                 = xyz
   bPeriodicMols        = FALSE
   bContinuation        = FALSE
   bShakeSOR            = FALSE
   etc                  = No
   nsttcouple           = -1
   epc                  = No
   epctype              = Isotropic
   nstpcouple           = -1
   tau_p                = 1
   ref_p (3x3):
      ref_p[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
      ref_p[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
      ref_p[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
   compress (3x3):
      compress[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
      compress[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
      compress[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
   refcoord_scaling     = No
   posres_com (3):
      posres_com[0]= 0.00000e+00
      posres_com[1]= 0.00000e+00
      posres_com[2]= 0.00000e+00
   posres_comB (3):
      posres_comB[0]= 0.00000e+00
      posres_comB[1]= 0.00000e+00
      posres_comB[2]= 0.00000e+00
   andersen_seed        = 815131
   rlist                = 1.2
   rlistlong            = 1.2
   rtpi                 = 0.05
   coulombtype          = PME
   rcoulomb_switch      = 0
   rcoulomb             = 1.2
   vdwtype              = Cut-off
   rvdw_switch          = 0
   rvdw                 = 1.2
   epsilon_r            = 1
   epsilon_rf           = 1
   tabext               = 1
   implicit_solvent     = No
   gb_algorithm         = Still
   gb_epsilon_solvent   = 80
   nstgbradii           = 1
   rgbradii             = 1
   gb_saltconc          = 0
   gb_obc_alpha         = 1
   gb_obc_beta          = 0.8
   gb_obc_gamma         = 4.85
   gb_dielectric_offset = 0.009
   sa_algorithm         = Ace-approximation
   sa_surface_tension   = 2.05016
   DispCorr             = No
   free_energy          = yes
   init_lambda          = 0.05
   delta_lambda         = 0
   n_foreign_lambda     = 0
   sc_alpha             = 0.7
   sc_power             = 1
   sc_sigma             = 0.3
   sc_sigma_min         = 0.3
   nstdhdl              = 10
   separate_dhdl_file   = yes
   dhdl_derivatives     = yes
   dh_hist_size         = 0
   dh_hist_spacing      = 0.1
   nwall                = 0
   wall_type            = 9-3
   wall_atomtype[0]     = -1
   wall_atomtype[1]     = -1
   wall_density[0]      = 0
   wall_density[1]      = 0
   wall_ewald_zfac      = 3
   pull                 = no
   disre                = Simple
   disre_weighting      = Conservative
   disre_mixed          = FALSE
   dr_fc                = 1000
   dr_tau               = 0
   nstdisreout          = 100
   orires_fc            = 0
   orires_tau           = 0
   nstorireout          = 100
   dihre-fc             = 1000
   em_stepsize          = 0.01
   em_tol               = 1000
   niter                = 20
   fc_stepsize          = 0
   nstcgsteep           = 1000
   nbfgscorr            = 10
   ConstAlg             = Lincs
   shake_tol            = 0.0001
   lincs_order          = 4
   lincs_warnangle      = 30
   lincs_iter           = 1
   bd_fric              = 0
   ld_seed              = 1993
   cos_accel            = 0
   deform (3x3):
      deform[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
      deform[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
      deform[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
   userint1             = 0
   userint2             = 0
   userint3             = 0
   userint4             = 0
   userreal1            = 0
   userreal2            = 0
   userreal3            = 0
   userreal4            = 0
grpopts:
   nrdf:       50427
   ref_t:           0
   tau_t:           0
anneal:          No
ann_npoints:           0
   acc:            0           0           0
   nfreeze:           N           N           N
   energygrp_flags[  0]: 0
   efield-x:
      n = 0
   efield-xt:
      n = 0
   efield-y:
      n = 0
   efield-yt:
      n = 0
   efield-z:
      n = 0
   efield-zt:
      n = 0
   bQMMM                = FALSE
   QMconstraints        = 0
   QMMMscheme           = 0
   scalefactor          = 1
qm_opts:
   ngQM                 = 0

Initializing Domain Decomposition on 2 nodes
Dynamic load balancing: no
Will sort the charge groups at every domain (re)decomposition
Initial maximum inter charge-group distances:
    two-body bonded interactions: 3.341 nm, LJC Pairs NB, atoms 22476 22761
  multi-body bonded interactions: 0.649 nm, Angle, atoms 1668 1686
Minimum cell size due to bonded interactions: 3.675 nm
Using 0 separate PME nodes
Optimizing the DD grid for 2 cells with a minimum initial size of 3.675 nm
The maximum allowed number of cells is: X 1 Y 1 Z 2
Domain decomposition grid 1 x 1 x 2, separate PME nodes 0
PME domain decomposition: 2 x 1 x 1
Domain decomposition nodeid 0, coordinates 0 0 0

Table routines are used for coulomb: TRUE
Table routines are used for vdw:     FALSE
Will do PME sum in reciprocal space.

++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee and L. G. Pedersen 
A smooth particle mesh Ewald method
J. Chem. Phys. 103 (1995) pp. 8577-8592
-------- -------- --- Thank You --- -------- --------

Will do ordinary reciprocal space Ewald sum.
Using a Gaussian width (1/beta) of 0.384195 nm for Ewald
Cut-off's:   NS: 1.2   Coulomb: 1.2   LJ: 1.2
System total charge, top. A: -0.000 top. B: 5.000
Generated table with 1100 data points for Ewald.
Tabscale = 500 points/nm
Generated table with 1100 data points for LJ6.
Tabscale = 500 points/nm
Generated table with 1100 data points for LJ12.
Tabscale = 500 points/nm
Generated table with 1100 data points for 1-4 COUL.
Tabscale = 500 points/nm
Generated table with 1100 data points for 1-4 LJ6.
Tabscale = 500 points/nm
Generated table with 1100 data points for 1-4 LJ12.
Tabscale = 500 points/nm

Enabling SPC-like water optimization for 5953 molecules.

Configuring nonbonded kernels...
Configuring standard C nonbonded kernels...
Testing x86_64 SSE2 support... present.


There are 304 atoms and 304 charges for free energy perturbation
Removing pbc first time

++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
S. Miyamoto and P. A. Kollman
SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithms for Rigid
Water Models
J. Comp. Chem. 13 (1992) pp. 952-962
-------- -------- --- Thank You --- -------- --------


Linking all bonded interactions to atoms
There are 55376 inter charge-group exclusions,
will use an extra communication step for exclusion forces for PME

The initial number of communication pulses is: Z 1
The initial domain decomposition cell size is: Z 5.09 nm

The maximum allowed distance for charge groups involved in interactions is:
                 non-bonded interactions           1.200 nm
            two-body bonded interactions  (-rdd)   4.213 nm
          multi-body bonded interactions  (-rdd)   4.213 nm

-- 
gmx-users mailing list    gmx-users@gromacs.org
http://lists.gromacs.org/mailman/listinfo/gmx-users
Please search the archive at 
http://www.gromacs.org/Support/Mailing_Lists/Search before posting!
Please don't post (un)subscribe requests to the list. Use the 
www interface or send it to gmx-users-requ...@gromacs.org.
Can't post? Read http://www.gromacs.org/Support/Mailing_Lists

Reply via email to