On 24/11/2024 12:58, Brian Revell wrote:
My concept here  of recursive in an Arima model  (2 0 1) for simplicity,  with signifnt coeffcts on all parameters would be
Xft+1=b1Xt+b2Xt-1+gErr t
Xft+2=b1Xft+1 +b2Xt
Xft+3 =b1Xft+2 +b2Xft+1      etc

ie the forecasts are endogenous.
Of course with a difference operator in the Arima spec, the forecast equation becomes more complex when multiplied out.


Sven and Artur have already pointed out that this is exactly what the --out-of-sample option does.

At the risk of being redundant, here's a demonstration where the same calculations are also performed explicitly via hansl commands:

<hansl>
set verbose off
clear
set seed 251124
nulldata 64
setobs 4 2010:1

series y = filter(normal(), {1, 0.5}, 0.95)
series u = 0
smpl ; -6
arima 1 1 ; y
T = $t2

printf "native:\n"
fcast --out-of-sample --no-stats

printf "by hand:\n\n"
smpl full

phihat = $coeff[2]
thetahat = $coeff[3]
muhat = $coeff[1] * (1 - phihat)
u = $uhat

ylag = y[T]
ulag = u[T]
loop t = T+1 .. $nobs
    yf = muhat + phihat * ylag + thetahat * ulag
    ylag = yf
    ulag = 0
    printf "%s  %11.6f  %11.6f\n", obslabel(t), y[t], yf
endloop
</hansl>



-------------------------------------------------------
  Riccardo (Jack) Lucchetti
  Dipartimento di Scienze Economiche e Sociali (DiSES)

  Università Politecnica delle Marche
  (formerly known as Università di Ancona)

  r.lucche...@univpm.it
  http://www2.econ.univpm.it/servizi/hpp/lucchetti
-------------------------------------------------------
_______________________________________________
Gretl-users mailing list -- gretl-users@gretlml.univpm.it
To unsubscribe send an email to gretl-users-le...@gretlml.univpm.it
Website: 
https://gretlml.univpm.it/postorius/lists/gretl-users.gretlml.univpm.it/

Reply via email to