On May 19, 2009, at 13:24 , Daniel Schüssler wrote:
Hello!
On Monday 18 May 2009 14:37:51 Kenneth Hoste wrote:
I'm mostly interested in the range 10D to 100D
is the dimension known at compile-time? Then you could consider
Template
Haskell.
In general, no. :-)
It will be known for some applications, but not for others.
I'm more and more amazed what comes into play just to implement
something simple like n-dim. Euclidean distance relatively fast using
Haskell.
It seems to me that GHC is missing several critical optimizations
(yes, I know, patches welcome) to enable it to emit fast code
for HPC applications.
I'm still a big fan of Haskell, for a variety of reasons, but it seems
like it's not ready yet for the task I had in mind, which is a shame.
Just to be clear, this isn't a flame bait post or anything, just my 2
cents.
K.
I wrote up some code for generating the vector types and vector
subtraction/inner product below, HTH. One problem is that I'm using a
typeclass and apparently you can't make {-# SPECIALISE #-} pragmas
with TH,
so let's hope it is automatically specialised by GHC.
Greetings,
Daniel
TH.hs
------------------
{-# LANGUAGE TemplateHaskell #-}
{-# OPTIONS -fglasgow-exts #-}
module TH where
import Language.Haskell.TH
import Control.Monad
-- Non-TH stuff
class InnerProductSpace v r | v -> r where
innerProduct :: v -> v -> r
class AbGroup v where
minus :: v -> v -> v
euclidean x y = case minus x y of
z -> sqrt $! innerProduct z z
-- TH
noContext :: Q Cxt
noContext = return []
strict :: Q Type -> StrictTypeQ
strict = liftM ((,) IsStrict)
makeVectors :: Int -- ^ Dimension
-> Q Type -- ^ Component type, assumed to be a 'Num'
-> String -- ^ Name for the generated type
-> Q [Dec]
makeVectors n ctyp name0 = do
-- let's assume ctyp = Double, name = Vector for the comments
-- generate names for the variables we will need
xs <- replicateM n (newName "x")
ys <- replicateM n (newName "y")
let
name = mkName name0
-- shorthands for arithmetic expressions; the first takes
expressions,
-- the others take variable names
sumE e1 e2 = infixE (Just e1) [|(+)|] (Just e2)
varDiffE e1 e2 = infixE (Just (varE e1)) [|(-)|] (Just (varE
e2))
varProdE e1 e2 = infixE (Just (varE e1)) [|(*)|] (Just (varE
e2))
conPat vars = conP name (fmap varP vars)
-- > data Vector = Vector !Double ... !Double
theDataD =
dataD noContext name [] -- no context, no params
[normalC name (replicate n (strict ctyp))]
[''Eq,''Ord,''Show] -- 'deriving' clause
innerProdD =
-- > instance InnerProductSpace Vector Double where ...
instanceD noContext ( conT ''InnerProductSpace
`appT` conT name
`appT` ctyp)
-- > innerProduct = ...
[valD
(varP 'innerProduct)
(normalB
-- \(Vector x1 x2 ... xn) (Vector y1 y2 ... yn)
->
(lamE [conPat xs, conPat ys]
-- x1*y1 + .... + xn*yn + 0
(foldl sumE [|0|] $
zipWith varProdE xs ys)
))
[] -- no 'where' clause
]
abGroupD =
instanceD noContext ( conT ''AbGroup
`appT` conT name)
-- > minus = ...
[valD
(varP 'minus)
(normalB
-- \(Vector x1 x2 ... xn) (Vector y1 y2 ... yn)
->
(lamE [conPat xs, conPat ys]
-- Vector (x1-y1) ... (xn-yn)
(foldl appE (conE name) $
zipWith varDiffE xs ys)
))
[] -- no 'where' clause
]
sequence [theDataD,innerProdD,abGroupD]
Main.hs
------------------
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE MultiParamTypeClasses #-}
module Main where
import TH
$(makeVectors 3 [t|Double|] "Vec3")
main = print $ euclidean (Vec3 1 1 1) (Vec3 0 0 0)
_______________________________________________
Haskell-Cafe mailing list
Haskell-Cafe@haskell.org
http://www.haskell.org/mailman/listinfo/haskell-cafe
--
Kenneth Hoste
Paris research group - ELIS - Ghent University, Belgium
email: kenneth.ho...@elis.ugent.be
website: http://www.elis.ugent.be/~kehoste
blog: http://boegel.kejo.be
_______________________________________________
Haskell-Cafe mailing list
Haskell-Cafe@haskell.org
http://www.haskell.org/mailman/listinfo/haskell-cafe