If you want to make a cluster table, I think percent overlaps with areas is a 
very reasonable way to do it.  I would recommend you follow Tim’s suggestion 
with vertex areas as well.  I would strongly recommend sharing your data as 
well (if it is CIFTI/GIFTI/NIFTI, the balsa.wustl.edu database is designed for 
it).

Matt.

From: 
<hcp-users-boun...@humanconnectome.org<mailto:hcp-users-boun...@humanconnectome.org>>
 on behalf of Timothy Coalson <tsc...@mst.edu<mailto:tsc...@mst.edu>>
Date: Thursday, April 25, 2019 at 1:55 PM
To: "Stevens, Michael" 
<michael.stev...@hhchealth.org<mailto:michael.stev...@hhchealth.org>>
Cc: "hcp-users@humanconnectome.org<mailto:hcp-users@humanconnectome.org>" 
<hcp-users@humanconnectome.org<mailto:hcp-users@humanconnectome.org>>
Subject: Re: [HCP-Users] Reporting dense analysis results

For just finding the overlap of some (positive-only) map with the parcels, the 
script would likely be a lot simpler if you used -cifti-parcellate with the 
"-method SUM" option (when doing so, I would also recommend using vertex areas, 
so that the resulting numbers are surface-area integrals rather than based on 
number of vertices).  You can then use -cifti-stats SUM to get the total, and 
divide by that in -cifti-math to get percentages.

Sharing the data files of the results means that to some extent, tables may not 
be as necessary.  I don't have a strong opinion here.  Personally, I like 
figures, but I haven't done/used meta-analysis.

Tim


On Thu, Apr 25, 2019 at 8:50 AM Stevens, Michael 
<michael.stev...@hhchealth.org<mailto:michael.stev...@hhchealth.org>> wrote:
Hi folks,

Yesterday’s question/replies on reporting tables of pscalar results prompted us 
to ask about a related question – I’m wondering what HCP folks recommend in 
terms of the format of tabulating/reporting straightforward “activation 
results” for DENSE data?  I couldn’t find a prior listserv post that exactly 
addressed this question, nor did a couple passes through recently published 
literature using HCP methodology turn up a good example to follow.  Could be 
I’m just missing stuff…

We’re finishing up analyses on a somewhat conceptually novel analysis that we 
think might be received at peer review better if we report the dense results.  
So we sorta envision reporting a table of clusters/cluster peaks where we refer 
to the 2017 parcellation paper for annotations, e.g., “Cluster 1 – Left IFSp 
(72%), Left IFJa (26%), Left IFSa (2%)”.  To get there, I’m picturing a 
do-able, yet somewhat awkward combination of cluster finding calls, label file 
references, ROI definitions, finding peaks/center-of-mass, and then a whole a 
bunch of –cifti-math operations to determine overlap of clusters vs. parcels… 
The number of steps/operations that would go into this is enough that I’m just 
brought up short thinking, “Wait, am I possibly missing something…”

Before I start going down this path in coding something like this up, I thought 
I’d check two things:

A) Is there a different conceptual approach altogether that you’d recommend 
considering for showcasing dense analysis results?  Our goal ultimately is to 
simply reinforce our results are fairly compatible with the demarcations of the 
360-parcel atlas to remove a potential reviewer criticism (this analysis is 
some weird stuff… using spontaneous fluctuations of electrodermal signals as 
event-onsets for fMRI timeseries analyses… amazingly, it seemed to work, with 
pretty interesting results that mirror our connectivity analyses on the same 
data).  But if HCP has an entirely different approach to tabulating/summarizing 
dense results, we’d welcome being brought up-to-speed.

B) The lazy part of me wonders… Has someone already coded up workbench function 
call or even a script for the various wb_commands needed that might already do 
this sort of thing with dense data?  Again, this seems so meat-and-potatoes for 
fMRI that we don’t want to re-invent the wheel here.

Thanks,
Mike


This e-mail message, including any attachments, is for the sole use of the 
intended recipient(s) and may contain confidential and privileged information. 
Any unauthorized review, use, disclosure, or distribution is prohibited. If you 
are not the intended recipient, or an employee or agent responsible for 
delivering the message to the intended recipient, please contact the sender by 
reply e-mail and destroy all copies of the original message, including any 
attachments.

_______________________________________________
HCP-Users mailing list
HCP-Users@humanconnectome.org<mailto:HCP-Users@humanconnectome.org>
http://lists.humanconnectome.org/mailman/listinfo/hcp-users

_______________________________________________
HCP-Users mailing list
HCP-Users@humanconnectome.org<mailto:HCP-Users@humanconnectome.org>
http://lists.humanconnectome.org/mailman/listinfo/hcp-users

________________________________
The materials in this message are private and may contain Protected Healthcare 
Information or other information of a sensitive nature. If you are not the 
intended recipient, be advised that any unauthorized use, disclosure, copying 
or the taking of any action in reliance on the contents of this information is 
strictly prohibited. If you have received this email in error, please 
immediately notify the sender via telephone or return mail.

_______________________________________________
HCP-Users mailing list
HCP-Users@humanconnectome.org
http://lists.humanconnectome.org/mailman/listinfo/hcp-users

Reply via email to