Hi, I am trying to translate this MIP problem - LINDO problem (below) into MathProg. It is timber harvesting scheduling MIP problem. I did convert LINDO LP Strategic Forest Estate model to MathProg model. This is a new area for me - mixed integer programming model for operational planning.
One area bothering me is the declaration of the binary variable in MIP problem. For example, the variable, ### var Harvest { s in STAND, p in PERIOD}, default 0; #### Now the binary variable, how do I define it? #### var xxxxx {s in STAND, p in PERIOD} binary; ##### What would be the xxxx? This var xxxx binary is for Period 1 only, as you see it in the model below. How this "var Harvest" and "var xxxx" would be link to each other? I have difficulty converting this LINDO MIP model into CPLEX MIP model as well. How do you convert this LINDO MIP model into CPLEX MIP model? Thanks. Regards, Noli ################################ Maximize 2302296.93 S4P1 + 1880346.75 S4P2 + 1530196.64 S4P3 + 1181829.81 S5P1 + 1006579.55 S5P2 + 856413.88 S5P3 + 2594358.61 S15P1 + 2131962.56 S15P2 + 1751801.46 S15P3 + 138096.38 S17P2 + 153019.58 S17P3 + 90877.44 S19P3 + 1132880.85 S23P1 + 1037888.51 S23P2 + 923190.15 S23P3 + 244772.47 S32P3 + 445408.12 S34P1 + 491757.11 S34P2 + 497167.18 S34P3 + 276264.51 S35P2 + 297776.31 S35P3 + 266732.81 S36P2 + 281685.06 S36P3 + 332759.58 S46P1 + 344307.80 S46P2 + 336240.27 S46P3 + 282975.25 S49P1 + 332577.77 S49P2 + 344926.80 S49P3 + 546298.82 S50P1 + 464983.30 S50P2 + 389779.54 S50P3 + 169262.38 S51P1 + 182446.16 S51P2 + 181990.26 S51P3 + 233050.46 S52P2 + 250836.30 S52P3 + 353264.20 S53P1 + 415187.61 S53P2 + 429032.50 S53P3 + 447032.22 S57P1 + 480928.92 S57P2 + 480623.75 S57P3 + 606882.06 S58P1 + 630962.51 S58P2 + 614387.11 S58P3 + 671556.35 S59P1 + 583820.28 S59P2 + 496772.35 S59P3 + 243344.93 S60P2 + 275267.77 S60P3 + 470791.52 S62P1 + 444261.16 S62P2 + 406367.79 S62P3 + 1096975.65 S63P1 + 966529.72 S63P2 + 833293.50 S63P3 + 630723.62 S64P1 + 582826.68 S64P2 + 519450.70 S64P3 + 1055045.97 S65P1 + 976051.81 S65P2 + 878696.08 S65P3 + 385987.52 S68P1 + 366101.07 S68P2 + 338122.43 S68P3 + 872967.71 S69P1 + 844377.62 S69P2 + 790953.51 S69P3 + 1428600.60 S71P1 + 1308568.72 S71P2 + 1163117.91 S71P3 + 673324.33 S74P1 + 698325.70 S74P2 + 680950.19 S74P3 + 629243.92 S75P1 + 634455.74 S75P2 + 611002.26 S75P3 + 57260.24 S76P1 + 56081.12 S76P2 + 52854.78 S76P3 + 1310629.81 S77P1 + 1116136.32 S77P2 + 949707.16 S77P3 + 2040932.09 S78P1 + 1662753.75 S78P2 + 1330362.96 S78P3 + 3919157.33 S79P1 + 3100374.30 S79P2 + 2447785.80 S79P3 + 939459.80 S80P1 + 839376.88 S80P2 + 732901.60 S80P3 + 129482.62 S81P1 + 142649.10 S81P2 + 144047.50 S81P3 + 1026129.37 S82P1 + 965750.53 S82P2 + 885290.98 S82P3 + 1714348.92 S83P1 + 1409453.16 S83P2 + 1157460.62 S83P3 + 989891.01 S84P1 + 933393.45 S84P2 + 854969.17 S84P3 + 2250792.63 S85P1 + 1834018.82 S85P2 + 1484543.95 S85P3 + 2020282.12 S86P1 + 1755181.33 S86P2 + 1493046.19 S86P3 + 1437297.62 S87P1 + 1317081.82 S87P2 + 1170720.08 S87P3 subject to 2) S4P1 + S4P2 + S4P3 <= 1 3) S5P1 + S5P2 + S5P3 <= 1 4) S15P1 + S15P2 + S15P3 <= 1 5) S17P2 + S17P3 <= 1 6) S19P3 <= 1 7) S23P1 + S23P2 + S23P3 <= 1 8) S32P3 <= 1 9) S34P1 + S34P2 + S34P3 <= 1 10) S35P2 + S35P3 <= 1 11) S36P2 + S36P3 <= 1 12) S46P1 + S46P2 + S46P3 <= 1 13) S49P1 + S49P2 + S49P3 <= 1 14) S50P1 + S50P2 + S50P3 <= 1 15) S51P1 + S51P2 + S51P3 <= 1 16) S52P2 + S52P3 <= 1 17) S53P1 + S53P2 + S53P3 <= 1 18) S57P1 + S57P2 + S57P3 <= 1 19) S58P1 + S58P2 + S58P3 <= 1 20) S59P1 + S59P2 + S59P3 <= 1 21) S60P2 + S60P3 <= 1 22) S62P1 + S62P2 + S62P3 <= 1 23) S63P1 + S63P2 + S63P3 <= 1 24) S64P1 + S64P2 + S64P3 <= 1 25) S65P1 + S65P2 + S65P3 <= 1 26) S68P1 + S68P2 + S68P3 <= 1 27) S69P1 + S69P2 + S69P3 <= 1 28) S71P1 + S71P2 + S71P3 <= 1 29) S74P1 + S74P2 + S74P3 <= 1 30) S75P1 + S75P2 + S75P3 <= 1 31) S76P1 + S76P2 + S76P3 <= 1 32) S77P1 + S77P2 + S77P3 <= 1 33) S78P1 + S78P2 + S78P3 <= 1 34) S79P1 + S79P2 + S79P3 <= 1 35) S80P1 + S80P2 + S80P3 <= 1 36) S81P1 + S81P2 + S81P3 <= 1 37) S82P1 + S82P2 + S82P3 <= 1 38) S83P1 + S83P2 + S83P3 <= 1 39) S84P1 + S84P2 + S84P3 <= 1 40) S85P1 + S85P2 + S85P3 <= 1 41) S86P1 + S86P2 + S86P3 <= 1 42) S87P1 + S87P2 + S87P3 <= 1 43) 1181.92 S62P1 + 2576.10 S82P1 + 2485.12 S84P1 + 2648.70 S65P1 + 1583.43 S64P1 + 2844.10 S23P1 + 3586.51 S71P1 + 3608.34 S87P1 + 2358.52 S80P1 + 2753.96 S63P1 + 1685.94 S59P1 + 5071.92 S86P1 + 2966.99 S5P1 + 3290.34 S77P1 + 1371.48 S50P1 + 6513.14 S15P1 + 4303.88 S83P1 + 5779.92 S4P1 + 5650.62 S85P1 + 5123.77 S78P1 + 9839.06 S79P1 + 969.02 S68P1 + 2191.59 S69P1 + 143.75 S76P1 + 1579.72 S75P1 + 835.39 S46P1 + 1523.58 S58P1 + 1690.38 S74P1 + 1122.28 S57P1 + 424.93 S51P1 + 325.07 S81P1 + 1118.20 S34P1 + 710.41 S49P1 + 886.87 S53P1 - H1 = 0 44) 179.69 S76P2 + 2705.48 S69P2 + 1173.03 S68P2 + 1423.46 S62P2 + 3094.37 S82P2 + 2990.69 S84P2 + 3127.38 S65P2 + 1867.44 S64P2 + 3325.51 S23P2 + 4192.80 S71P2 + 4220.07 S87P2 + 2689.45 S80P2 + 3096.87 S63P2 + 1870.62 S59P2 + 5623.79 S86P2 + 3225.19 S5P2 + 3576.22 S77P2 + 1489.86 S50P2 + 6831.04 S15P2 + 4516.04 S83P2 + 6024.84 S4P2 + 5876.40 S85P2 + 5327.64 S78P2 + 9933.94 S79P2 + 2032.87 S75P2 + 1103.20 S46P2 + 2014.35 S58P2 + 2237.51 S74P2 + 1540.95 S57P2 + 584.58 S51P2 + 457.06 S81P2 + 1575.64 S34P2 + 1065.62 S49P2 + 1330.31 S53P2 + 854.64 S36P2 + 885.18 S35P2 + 746.72 S52P2 + 442.48 S17P2 + 779.70 S60P2 - H2 = 0 45) 1375.00 S46P3 + 2512.44 S58P3 + 2784.64 S74P3 + 2498.60 S75P3 + 216.14 S76P3 + 3234.48 S69P3 + 1382.70 S68P3 + 1661.78 S62P3 + 3620.26 S82P3 + 3496.26 S84P3 + 3593.29 S65P3 + 2124.21 S64P3 + 3775.24 S23P3 + 4756.39 S71P3 + 4787.48 S87P3 + 2997.09 S80P3 + 3407.62 S63P3 + 2031.47 S59P3 + 6105.58 S86P3 + 3502.17 S5P3 + 3883.68 S77P3 + 1593.94 S50P3 + 7163.72 S15P3 + 4733.26 S83P3 + 6257.50 S4P3 + 6070.81 S85P3 + 5440.31 S78P3 + 10009.84 S79P3 + 1965.44 S57P3 + 744.22 S51P3 + 589.06 S81P3 + 2033.09 S34P3 + 1410.52 S49P3 + 1754.46 S53P3 + 1151.91 S36P3 + 1217.71 S35P3 + 1025.76 S52P3 + 625.75 S17P3 + 1125.66 S60P3 + 371.63 S19P3 + 1000.96 S32P3 - H3 = 0 end int S4P1 int S5P1 int S15P1 int S23P1 int S34P1 int S46P1 int S49P1 int S50P1 int S51P1 int S53P1 int S57P1 int S58P1 int S59P1 int S62P1 int S63P1 int S64P1 int S65P1 int S68P1 int S69P1 int S71P1 int S74P1 int S75P1 int S76P1 int S77P1 int S78P1 int S79P1 int S80P1 int S81P1 int S82P1 int S83P1 int S84P1 int S85P1 int S86P1 int S87P1 _______________________________________________ Help-glpk mailing list Help-glpk@gnu.org https://lists.gnu.org/mailman/listinfo/help-glpk