Hi,

I am trying to translate this MIP problem - LINDO problem (below) into
MathProg.
It is timber harvesting scheduling MIP problem. I did convert LINDO LP
Strategic Forest Estate model to MathProg model. This is a new area
for me - mixed integer programming model for operational planning.

One area bothering me is the declaration of the binary variable in MIP problem.

For example, the variable,

###

var Harvest { s in STAND, p in PERIOD}, default 0;

####

Now the binary variable, how do I define it?

####

var xxxxx {s in STAND, p in PERIOD} binary;

#####

What would be the xxxx?

This var xxxx binary is for Period 1 only, as you see it in the model
below. How this "var Harvest" and "var xxxx" would be link to each
other?

I have difficulty converting this LINDO MIP model into CPLEX MIP model
as well. How do you convert this LINDO MIP model into CPLEX MIP model?


Thanks.

Regards, Noli

################################

Maximize
  2302296.93 S4P1 + 1880346.75 S4P2 + 1530196.64 S4P3
+ 1181829.81 S5P1 + 1006579.55 S5P2 + 856413.88 S5P3
+ 2594358.61 S15P1 + 2131962.56 S15P2 + 1751801.46 S15P3
+ 138096.38 S17P2 + 153019.58 S17P3
+ 90877.44 S19P3
+ 1132880.85 S23P1 + 1037888.51 S23P2 + 923190.15 S23P3
+ 244772.47 S32P3
+ 445408.12 S34P1 + 491757.11 S34P2 + 497167.18 S34P3
+ 276264.51 S35P2 + 297776.31 S35P3
+ 266732.81 S36P2 + 281685.06 S36P3
+ 332759.58 S46P1 + 344307.80 S46P2 + 336240.27 S46P3
+ 282975.25 S49P1 + 332577.77 S49P2 + 344926.80 S49P3
+ 546298.82 S50P1 + 464983.30 S50P2 + 389779.54 S50P3
+ 169262.38 S51P1 + 182446.16 S51P2 + 181990.26 S51P3
+ 233050.46 S52P2 + 250836.30 S52P3
+ 353264.20 S53P1 + 415187.61 S53P2 + 429032.50 S53P3
+ 447032.22 S57P1 + 480928.92 S57P2 + 480623.75 S57P3
+ 606882.06 S58P1 + 630962.51 S58P2 + 614387.11 S58P3
+ 671556.35 S59P1 + 583820.28 S59P2 + 496772.35 S59P3
+ 243344.93 S60P2 + 275267.77 S60P3
+ 470791.52 S62P1 + 444261.16 S62P2 + 406367.79 S62P3
+ 1096975.65 S63P1 + 966529.72 S63P2 + 833293.50 S63P3
+ 630723.62 S64P1 + 582826.68 S64P2 + 519450.70 S64P3
+ 1055045.97 S65P1 + 976051.81 S65P2 + 878696.08 S65P3
+ 385987.52 S68P1 + 366101.07 S68P2 + 338122.43 S68P3
+ 872967.71 S69P1 + 844377.62 S69P2 + 790953.51 S69P3
+ 1428600.60 S71P1 + 1308568.72 S71P2 + 1163117.91 S71P3
+ 673324.33 S74P1 + 698325.70 S74P2 + 680950.19 S74P3
+ 629243.92 S75P1 + 634455.74 S75P2 + 611002.26 S75P3
+ 57260.24 S76P1 + 56081.12 S76P2 + 52854.78 S76P3
+ 1310629.81 S77P1 + 1116136.32 S77P2 + 949707.16 S77P3
+ 2040932.09 S78P1 + 1662753.75 S78P2 + 1330362.96 S78P3
+ 3919157.33 S79P1 + 3100374.30 S79P2 + 2447785.80 S79P3
+ 939459.80 S80P1 + 839376.88 S80P2 + 732901.60 S80P3
+ 129482.62 S81P1 + 142649.10 S81P2 + 144047.50 S81P3
+ 1026129.37 S82P1 + 965750.53 S82P2 + 885290.98 S82P3
+ 1714348.92 S83P1 + 1409453.16 S83P2 + 1157460.62 S83P3
+ 989891.01 S84P1 + 933393.45 S84P2 + 854969.17 S84P3
+ 2250792.63 S85P1 + 1834018.82 S85P2 + 1484543.95 S85P3
+ 2020282.12 S86P1 + 1755181.33 S86P2 + 1493046.19 S86P3
+ 1437297.62 S87P1 + 1317081.82 S87P2 + 1170720.08 S87P3
subject to
2) S4P1 + S4P2 + S4P3 <= 1
3) S5P1 + S5P2 + S5P3 <= 1
4) S15P1 + S15P2 + S15P3 <= 1
5) S17P2 + S17P3 <= 1
6) S19P3 <= 1
7) S23P1 + S23P2 + S23P3 <= 1
8) S32P3 <= 1
9) S34P1 + S34P2 + S34P3 <= 1
10) S35P2 + S35P3 <= 1
11) S36P2 + S36P3 <= 1
12) S46P1 + S46P2 + S46P3 <= 1
13) S49P1 + S49P2 + S49P3 <= 1
14) S50P1 + S50P2 + S50P3 <= 1
15) S51P1 + S51P2 + S51P3 <= 1
16) S52P2 + S52P3 <= 1
17) S53P1 + S53P2 + S53P3 <= 1
18) S57P1 + S57P2 + S57P3 <= 1
19) S58P1 + S58P2 + S58P3 <= 1
20) S59P1 + S59P2 + S59P3 <= 1
21) S60P2 + S60P3 <= 1
22) S62P1 + S62P2 + S62P3 <= 1
23) S63P1 + S63P2 + S63P3 <= 1
24) S64P1 + S64P2 + S64P3 <= 1
25) S65P1 + S65P2 + S65P3 <= 1
26) S68P1 + S68P2 + S68P3 <= 1
27) S69P1 + S69P2 + S69P3 <= 1
28) S71P1 + S71P2 + S71P3 <= 1
29) S74P1 + S74P2 + S74P3 <= 1
30) S75P1 + S75P2 + S75P3 <= 1
31) S76P1 + S76P2 + S76P3 <= 1
32) S77P1 + S77P2 + S77P3 <= 1
33) S78P1 + S78P2 + S78P3 <= 1
34) S79P1 + S79P2 + S79P3 <= 1
35) S80P1 + S80P2 + S80P3 <= 1
36) S81P1 + S81P2 + S81P3 <= 1
37) S82P1 + S82P2 + S82P3 <= 1
38) S83P1 + S83P2 + S83P3 <= 1
39) S84P1 + S84P2 + S84P3 <= 1
40) S85P1 + S85P2 + S85P3 <= 1
41) S86P1 + S86P2 + S86P3 <= 1
42) S87P1 + S87P2 + S87P3 <= 1
43) 1181.92 S62P1
+ 2576.10 S82P1
+ 2485.12 S84P1
+ 2648.70 S65P1
+ 1583.43 S64P1
+ 2844.10 S23P1
+ 3586.51 S71P1
+ 3608.34 S87P1
+ 2358.52 S80P1
+ 2753.96 S63P1
+ 1685.94 S59P1
+ 5071.92 S86P1
+ 2966.99 S5P1
+ 3290.34 S77P1
+ 1371.48 S50P1
+ 6513.14 S15P1
+ 4303.88 S83P1
+ 5779.92 S4P1
+ 5650.62 S85P1
+ 5123.77 S78P1
+ 9839.06 S79P1
+ 969.02 S68P1
+ 2191.59 S69P1
+ 143.75 S76P1
+ 1579.72 S75P1
+ 835.39 S46P1
+ 1523.58 S58P1
+ 1690.38 S74P1
+ 1122.28 S57P1
+ 424.93 S51P1
+ 325.07 S81P1
+ 1118.20 S34P1
+ 710.41 S49P1
+ 886.87 S53P1
- H1 = 0
44) 179.69 S76P2
+ 2705.48 S69P2
+ 1173.03 S68P2
+ 1423.46 S62P2
+ 3094.37 S82P2
+ 2990.69 S84P2
+ 3127.38 S65P2
+ 1867.44 S64P2
+ 3325.51 S23P2
+ 4192.80 S71P2
+ 4220.07 S87P2
+ 2689.45 S80P2
+ 3096.87 S63P2
+ 1870.62 S59P2
+ 5623.79 S86P2
+ 3225.19 S5P2
+ 3576.22 S77P2
+ 1489.86 S50P2
+ 6831.04 S15P2
+ 4516.04 S83P2
+ 6024.84 S4P2
+ 5876.40 S85P2
+ 5327.64 S78P2
+ 9933.94 S79P2
+ 2032.87 S75P2
+ 1103.20 S46P2
+ 2014.35 S58P2
+ 2237.51 S74P2
+ 1540.95 S57P2
+ 584.58 S51P2
+ 457.06 S81P2
+ 1575.64 S34P2
+ 1065.62 S49P2
+ 1330.31 S53P2
+ 854.64 S36P2
+ 885.18 S35P2
+ 746.72 S52P2
+ 442.48 S17P2
+ 779.70 S60P2
- H2 = 0
45) 1375.00 S46P3
+ 2512.44 S58P3
+ 2784.64 S74P3
+ 2498.60 S75P3
+ 216.14 S76P3
+ 3234.48 S69P3
+ 1382.70 S68P3
+ 1661.78 S62P3
+ 3620.26 S82P3
+ 3496.26 S84P3
+ 3593.29 S65P3
+ 2124.21 S64P3
+ 3775.24 S23P3
+ 4756.39 S71P3
+ 4787.48 S87P3
+ 2997.09 S80P3
+ 3407.62 S63P3
+ 2031.47 S59P3
+ 6105.58 S86P3
+ 3502.17 S5P3
+ 3883.68 S77P3
+ 1593.94 S50P3
+ 7163.72 S15P3
+ 4733.26 S83P3
+ 6257.50 S4P3
+ 6070.81 S85P3
+ 5440.31 S78P3
+ 10009.84 S79P3
+ 1965.44 S57P3
+ 744.22 S51P3
+ 589.06 S81P3
+ 2033.09 S34P3
+ 1410.52 S49P3
+ 1754.46 S53P3
+ 1151.91 S36P3
+ 1217.71 S35P3
+ 1025.76 S52P3
+ 625.75 S17P3
+ 1125.66 S60P3
+ 371.63 S19P3
+ 1000.96 S32P3
- H3 = 0
end
int S4P1
int S5P1
int S15P1
int S23P1
int S34P1
int S46P1
int S49P1
int S50P1
int S51P1
int S53P1
int S57P1
int S58P1
int S59P1
int S62P1
int S63P1
int S64P1
int S65P1
int S68P1
int S69P1
int S71P1
int S74P1
int S75P1
int S76P1
int S77P1
int S78P1
int S79P1
int S80P1
int S81P1
int S82P1
int S83P1
int S84P1
int S85P1
int S86P1
int S87P1

_______________________________________________
Help-glpk mailing list
Help-glpk@gnu.org
https://lists.gnu.org/mailman/listinfo/help-glpk

Reply via email to