On Wed, 2017-01-04 at 23:43 +0200, Alexey Karakulov wrote: > Hi, I have this kind of function in the objective: > > > crop(s) = max(0, min(1, s)) > > > I wonder if it's possible (and how) to reformulate the task to be LP > problem. I have read this posting [1], but I'm not sure how to apply > it.
Note that crop(x) = f(x) - f(x-1) where f(x) = 0, if x < 0 = x, if x >= 0 The latter equality can be modeled thru the following linear constraints: x = x1 + x2 f = x1 x1, x2 >= 0 where x1, x2 are auxiliary variables. f(x-1) can be modeled in the same way by taking y = x-1. (Check all this carefully for errors.) > > > > param maxN default 1000; > > param maxJ default 10; > > set N := 1 .. maxN; > > set J := 1 .. maxJ; > > param a{N}; > > param w{N}; > > var X0; > > var X{J}; > > var S{maxJ .. maxN}; > > > > maximize Obj: sum {n in N} w[n] * crop(S[n]) > > > subject to DefineS {n in maxJ .. maxN}: S[n] = X0 + sum {j in J} > a[n-j+1] * X[j] > > > [1]: http://lists.gnu.org/archive/html/help-glpk/2007-06/msg00005.html > _______________________________________________ Help-glpk mailing list Help-glpk@gnu.org https://lists.gnu.org/mailman/listinfo/help-glpk