[
https://issues.apache.org/jira/browse/HIVE-372?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=12698817#action_12698817
]
Namit Jain commented on HIVE-372:
---------------------------------
committed in branch 3.
However, I am getting the following error in trunk:
[junit] diff -a -I \(file:\)\|\(/tmp/.*\) /data/users/njain/hive_commit/tru\
nk/build/ql/test/logs/clientpositive/udf_10_trims.q.out /data/users/njain/hive_\
commit/trunk/ql/src/test/results/clientpositive/udf_10_trims.q.out
[junit] 30c30
[junit] < output format: org.apache.hadoop.hive.ql.\
io.HiveIgnoreKeyTextOutputFormat
[junit] ---
[junit] > output format: org.apache.hadoop.hive.ql.\
io.IgnoreKeyTextOutputFormat
[junit] 40c40
[junit] < output format: org.apache.hadoop.hive.ql.io.HiveI\
gnoreKeyTextOutputFormat
[junit] ---
[junit] > output format: org.apache.hadoop.hive.ql.io.Ignor\
eKeyTextOutputFormat
Zheng, can you create a new patch for trunk ?
> Nested UDFs cause _very_ high memory usage when processing query
> ----------------------------------------------------------------
>
> Key: HIVE-372
> URL: https://issues.apache.org/jira/browse/HIVE-372
> Project: Hadoop Hive
> Issue Type: Bug
> Components: Query Processor
> Environment: Fedora Linux, 10x Amazon EC2 (Large Instance w/ 8GB Ram)
> Reporter: Steve Corona
> Attachments: HIVE-372.1.patch, HIVE-372.2.patch
>
>
> When nesting UDFs, the Hive Query processor takes a large amount of
> time+memory to process the query. For example, I ran something along the
> lines of:
> select trim( trim( trim(trim( trim( trim( trim( trim( trim(column)))))))))
> from test_table;
> This query needs 10GB+ of memory to process before it'll launch the job. The
> amount of memory increases exponentially with each nested UDF.
> Obviously, I am using trim() in this case as a simple example that causes the
> same problem to occur. In my actual use-case I had a bunch of nested
> regexp_replaces.
--
This message is automatically generated by JIRA.
-
You can reply to this email to add a comment to the issue online.