[
https://issues.apache.org/jira/browse/HIVE-917?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=12830012#action_12830012
]
Namit Jain commented on HIVE-917:
---------------------------------
BucketMapJoinOptimizer.java: 80
wrong comment:
// process group-by pattern
can you add a correct comment ?
// mapper. That means there is not reducer between the root table scan and
change to:
// mapper. That means there is no reducer between the root table scan and
Add some comments in
private boolean checkBucketColumns(List<String> bucketColumns, MapJoinDesc
mjDesc, int index) {
A mapjoin B where A is the big table and partitioned should be optimized
B is not partitioned
(assuming both A and B are bucketed)
if(partNumber == 0) {
Integer num = new Integer(0);
bucketNumbers.add(num);
aliasToBucketNumber.put(alias, num);
aliasToBucketFileNames.put(alias, new ArrayList<String>());
no need to do this - anyway, the results are empty
ExecMapper:
if(bucketMatcherCls == null) {
bucketMatcherCls =
org.apache.hadoop.hive.ql.exec.DefaultBucketMatcher.class;
}
Add the class name in mapredlocalwork and initialize it using reflection
Keep file name to file name mapping in mapredlocalwork (only useful for
bucketed map join - not for skew join)
MapredLocalWork:
private LinkedHashMap<String, Integer> aliasToBucketNumber;
private LinkedHashMap<String, List<String>> aliasToBucketFileNames;
private String mapJoinBigTableAlias;
private Class<? extends BucketMatcher> bucketMatcker;
create a new class for the above
public Class<? extends BucketMatcher> getBucketMatcker() {
return bucketMatcker;
}
public void setBucketMatcker(Class<? extends BucketMatcher> bucketMatcker) {
this.bucketMatcker = bucketMatcker;
}
spelling: should be Matcher
DefaultBucketMatcher:
public List<Path> getAliasBucketFiles(String refTableInputFile, String
refTableAlias, String alias) {
int bigTblBucketNum = aliasToBucketNumber.get(refTableAlias);
int smallTblBucketNum = aliasToBucketNumber.get(alias);
Collections.sort(aliasToBucketFileNames.get(refTableAlias));
Collections.sort(aliasToBucketFileNames.get(alias));
List<Path> resultFileNames = new ArrayList<Path>();
if (bigTblBucketNum >= smallTblBucketNum) {
int temp = bigTblBucketNum / smallTblBucketNum;
int index =
aliasToBucketFileNames.get(refTableAlias).indexOf(refTableInputFile);
int toAddSmallIndex = index/temp;
if(toAddSmallIndex < aliasToBucketFileNames.get(alias).size()) {
resultFileNames.add(new
Path(aliasToBucketFileNames.get(alias).get(toAddSmallIndex)));
}
} else {
int jump = smallTblBucketNum / bigTblBucketNum;
int index =
aliasToBucketFileNames.get(refTableAlias).indexOf(refTableInputFile);
for (int i = index; i < aliasToBucketFileNames.get(alias).size(); i = i +
jump) {
if(i <= aliasToBucketFileNames.get(alias).size()) {
resultFileNames.add(new
Path(aliasToBucketFileNames.get(alias).get(i)));
}
}
}
return resultFileNames;
}
move this to compile time and add some more comments
FetchOperator.java:
6 boolean ret = false;
267 try {
268 value =
currRecReader.createValue();
269 ret = currRecReader.next(key,
value);
270 } catch (Exception e) {
271 e.printStackTrace();
272 }
> Bucketed Map Join
> -----------------
>
> Key: HIVE-917
> URL: https://issues.apache.org/jira/browse/HIVE-917
> Project: Hadoop Hive
> Issue Type: New Feature
> Reporter: Zheng Shao
> Attachments: hive-917-2010-2-3.patch
>
>
> Hive already have support for map-join. Map-join treats the big table as job
> input, and in each mapper, it loads all data from a small table.
> In case the big table is already bucketed on the join key, we don't have to
> load the whole small table in each of the mappers. This will greatly
> alleviate the memory pressure, and make map-join work with medium-sized
> tables.
> There are 4 steps we can improve:
> S0. This is what the user can already do now: create a new bucketed table and
> insert all data from the small table to it; Submit BUCKETNUM jobs, each doing
> a map-side join of "bigtable TABLEPARTITION(BUCKET i OUT OF NBUCKETS)" with
> "smallbucketedtable TABLEPARTITION(BUCKET i OUT OF NBUCKETS)".
> S1. Change the code so that when map-join is loading the small table, we
> automatically drop the rows with the keys that are NOT in the same bucket as
> the big table. This should alleviate the problem on memory, but we might
> still have thousands of mappers reading the whole of the small table.
> S2. Let's say the user already bucketed the small table on the join key into
> exactly the same number of buckets (or a factor of the buckets of the big
> table), then map-join can choose to load only the buckets that are useful.
> S3. Add a new hint (e.g. /*+ MAPBUCKETJOIN(a) */), so that Hive automatically
> does S2, without the need of asking the user to create temporary bucketed
> table for the small table.
--
This message is automatically generated by JIRA.
-
You can reply to this email to add a comment to the issue online.