some personal opinions here. the whole table resides in memory. It is stored in a hash table. So, the heap memory should be at least larger than the table size.
Even you double your heap size. I think the job will possibly fail, for the hash table in Java is not a memory-efficient data structure (Of course, this really depend the number of records and the length of each record). I think Map Join could only handle very small table (100 mb or so). -Gang ----- 原始邮件 ---- 发件人: Edward Capriolo <edlinuxg...@gmail.com> 收件人: hive-user@hadoop.apache.org 发送日期: 2010/2/18 (周四) 5:45:10 下午 主 题: map join and OOM I have Hive 4.1-rc2. My query runs in Time taken: 312.956 seconds using the map/reduce join. I was interested in using mapjoin, I get an OOM error. hive> java.lang.OutOfMemoryError: GC overhead limit exceeded at org.apache.hadoop.hive.ql.util.jdbm.recman.RecordFile.getNewNode(RecordFile.java:369) My pageviews is 8GB and my client_ips is ~ 1GB <property> <name>mapred.child.java.opts</name> <value>-Xmx778m</value> </property> [ecapri...@nyhadoopdata10 ~]$ hive Hive history file=/tmp/ecapriolo/hive_job_log_ecapriolo_201002181717_253155276.txt hive> explain Select /*+ MAPJOIN( client_ips )*/clientip_id,client_ip, SUM(bytes_sent) as X from pageviews join client_ips on pageviews.clientip_id=client_ips.id where year=2010 AND month=02 and day=17 group by clientip_id,client_ip > ; OK ABSTRACT SYNTAX TREE: (TOK_QUERY (TOK_FROM (TOK_JOIN (TOK_TABREF pageviews) (TOK_TABREF client_ips) (= (. (TOK_TABLE_OR_COL pageviews) clientip_id) (. (TOK_TABLE_OR_COL client_ips) id)))) (TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT (TOK_HINTLIST (TOK_HINT TOK_MAPJOIN (TOK_HINTARGLIST client_ips))) (TOK_SELEXPR (TOK_TABLE_OR_COL clientip_id)) (TOK_SELEXPR (TOK_TABLE_OR_COL client_ip)) (TOK_SELEXPR (TOK_FUNCTION SUM (TOK_TABLE_OR_COL bytes_sent)) X)) (TOK_WHERE (and (AND (= (TOK_TABLE_OR_COL year) 2010) (= (TOK_TABLE_OR_COL month) 02)) (= (TOK_TABLE_OR_COL day) 17))) (TOK_GROUPBY (TOK_TABLE_OR_COL clientip_id) (TOK_TABLE_OR_COL client_ip)))) STAGE DEPENDENCIES: Stage-1 is a root stage Stage-2 depends on stages: Stage-1 Stage-0 is a root stage STAGE PLANS: Stage: Stage-1 Map Reduce Alias -> Map Operator Tree: pageviews TableScan alias: pageviews Filter Operator predicate: expr: (((UDFToDouble(year) = UDFToDouble(2010)) and (UDFToDouble(month) = UDFToDouble(2))) and (UDFToDouble(day) = UDFToDouble(17))) type: boolean Common Join Operator condition map: Inner Join 0 to 1 condition expressions: 0 {clientip_id} {bytes_sent} {year} {month} {day} 1 {client_ip} keys: 0 1 outputColumnNames: _col13, _col17, _col22, _col23, _col24, _col26 Position of Big Table: 0 File Output Operator compressed: false GlobalTableId: 0 table: input format: org.apache.hadoop.mapred.SequenceFileInputFormat output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat Local Work: Map Reduce Local Work Alias -> Map Local Tables: client_ips Fetch Operator limit: -1 Alias -> Map Local Operator Tree: client_ips TableScan alias: client_ips Common Join Operator condition map: Inner Join 0 to 1 condition expressions: 0 {clientip_id} {bytes_sent} {year} {month} {day} 1 {client_ip} keys: 0 1 outputColumnNames: _col13, _col17, _col22, _col23, _col24, _col26 Position of Big Table: 0 File Output Operator compressed: false GlobalTableId: 0 table: input format: org.apache.hadoop.mapred.SequenceFileInputFormat output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat Stage: Stage-2 Map Reduce Alias -> Map Operator Tree: hdfs://nyhadoopname1.ops.about.com:8020/tmp/hive-ecapriolo/975920219/10002 Select Operator expressions: expr: _col13 type: int expr: _col17 type: int expr: _col22 type: string expr: _col23 type: string expr: _col24 type: string expr: _col26 type: string outputColumnNames: _col13, _col17, _col22, _col23, _col24, _col26 Filter Operator predicate: expr: (((UDFToDouble(_col22) = UDFToDouble(2010)) and (UDFToDouble(_col23) = UDFToDouble(2))) and (UDFToDouble(_col24) = UDFToDouble(17))) type: boolean Select Operator expressions: expr: _col13 type: int expr: _col26 type: string expr: _col17 type: int outputColumnNames: _col13, _col26, _col17 Group By Operator aggregations: expr: sum(_col17) keys: expr: _col13 type: int expr: _col26 type: string mode: hash outputColumnNames: _col0, _col1, _col2 Reduce Output Operator key expressions: expr: _col0 type: int expr: _col1 type: string sort order: ++ Map-reduce partition columns: expr: _col0 type: int expr: _col1 type: string tag: -1 value expressions: expr: _col2 type: bigint Reduce Operator Tree: Group By Operator aggregations: expr: sum(VALUE._col0) keys: expr: KEY._col0 type: int expr: KEY._col1 type: string mode: mergepartial outputColumnNames: _col0, _col1, _col2 Select Operator expressions: expr: _col0 type: int expr: _col1 type: string expr: _col2 type: bigint outputColumnNames: _col0, _col1, _col2 File Output Operator compressed: false GlobalTableId: 0 table: input format: org.apache.hadoop.mapred.TextInputFormat output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat Stage: Stage-0 Fetch Operator limit: -1 Time taken: 4.511 seconds Q: is the 1GB client_ip table too large for a mapjoin? Memory <value>-Xmx778m</value>. I could go higher. Not sure if i want to may have a cascading affect. Q: is the table in mapjoin all in main memory? Or is this like a small database on each mapper? Any other hints? Thank you. ___________________________________________________________ 好玩贺卡等你发,邮箱贺卡全新上线! http://card.mail.cn.yahoo.com/