Hi Michael, Thanks, I’ll see if I can directly use something from pathTheory.
Regards, Chun > Il giorno 23 ott 2017, alle ore 02:23, michael.norr...@data61.csiro.au ha > scritto: > > I’m afraid I can’t now remember if someone has already pointed this out, but > I think you probably should use the theory of “paths” for this sort of thing. > > See the description in the DESCRIPTION manual, and the theory itself in > src/path > > Michael > > From: "Chun Tian (binghe)" <binghe.l...@gmail.com> > Date: Thursday, 5 October 2017 at 23:35 > To: hol-info <hol-info@lists.sourceforge.net> > Subject: [Hol-info] LRTC (Reflexive Transitive Closure with a List) > > Hi, > > In listTheory there's a concept called "LRC": > > (* ---------------------------------------------------------------------- > LRC > Where NRC has the number of steps in a transitive path, > LRC has a list of the elements in the path (excluding the rightmost) > ---------------------------------------------------------------------- *) > > val LRC_def = Define` > (LRC R [] x y = (x = y)) /\ > (LRC R (h::t) x y = > (x = h) /\ ?z. R x z /\ LRC R t z y)`; > > But I think a more useful similar concept should be a Reflexive Transitive > Closure which is able to remember all the transition labels in a relation R > (of type 'a -> 'b -> 'a -> bool), that is: > > val LRTC_DEF = new_definition ("LRTC_DEF", > ``LRTC (R :'a -> 'b -> 'a -> bool) a l b = > !P. (!x. P x [] x) /\ > (!x h y t z. R x h y /\ P y t z ==> P x (h :: t) z) ==> P a l b``); > > For example, if we have a relation R and things like P --a--> Q, Q --b--> R, > the resulting closure (LRTC R) can be used to describe P --[a;b]--> R. > > Following a similar path with RTC in relationTheory, I can prove the > following basic theorems: > > [LRTC0_NO_TRANS] Theorem > > |- ∀R x y. LRTC R x [] y ⇔ (x = y) > > [LRTC_CASES1] Theorem > > |- ∀R x l y. > LRTC R x l y ⇔ > if NULL l then x = y else ∃u. R x (HD l) u ∧ LRTC R u (TL l) y > > [LRTC_CASES2] Theorem > > |- ∀R x l y. > LRTC R x l y ⇔ > if NULL l then x = y > else ∃u. LRTC R x (FRONT l) u ∧ R u (LAST l) y > > [LRTC_CASES_LRTC_TWICE] Theorem > > |- ∀R x l y. > LRTC R x l y ⇔ > ∃u l1 l2. LRTC R x l1 u ∧ LRTC R u l2 y ∧ (l = l1 ⧺ l2) > > [LRTC_INDUCT] Theorem > > |- ∀R P. > (∀x. P x [] x) ∧ > (∀x h y t z. R x h y ∧ P y t z ⇒ P x (h::t) z) ⇒ > ∀x l y. LRTC R x l y ⇒ P x l y > > [LRTC_LRTC] Theorem > > |- ∀R x m y. LRTC R x m y ⇒ ∀n z. LRTC R y n z ⇒ LRTC R x (m ⧺ n) z > > [LRTC_REFL] Theorem > > |- ∀R. LRTC R x [] x > > [LRTC_RULES] Theorem > > |- ∀R. > (∀x. LRTC R x [] x) ∧ > ∀x h y t z. R x h y ∧ LRTC R y t z ⇒ LRTC R x (h::t) z > > [LRTC_SINGLE] Theorem > > |- ∀R x t y. R x t y ⇒ LRTC R x [t] y > > [LRTC_STRONG_INDUCT] Theorem > > |- ∀R P. > (∀x. P x [] x) ∧ > (∀x h y t z. R x h y ∧ LRTC R y t z ∧ P y t z ⇒ P x (h::t) z) ⇒ > ∀x l y. LRTC R x l y ⇒ P x l y > > [LRTC_TRANS] Theorem > > |- ∀R x m y n z. LRTC R x m y ∧ LRTC R y n z ⇒ LRTC R x (m ⧺ n) z > > Is this something general enough for putting into, say, rich_listTheory? (or > has anyone already done a similar development?) > > Regards, > > -- > Chun Tian (binghe) > University of Bologna (Italy) >
signature.asc
Description: Message signed with OpenPGP using GPGMail
------------------------------------------------------------------------------ Check out the vibrant tech community on one of the world's most engaging tech sites, Slashdot.org! http://sdm.link/slashdot
_______________________________________________ hol-info mailing list hol-info@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/hol-info