I think that Royston and Wood is the best advice we have at present.

What is really needed is a rule of thumb recognizing that having lots of
complete cases can help to insulate against missings somewhat, as can the
total sample size.

------------------------------
Frank E Harrell Jr      Professor and Chairman      School of Medicine

Department of *Biostatistics*      *Vanderbilt University*

On Mon, Sep 12, 2016 at 2:50 AM, Hoogendoorn, Adriaan <
[email protected]> wrote:

> Originally, small numbers of imputations (3 or 5) were suggested, but
> currently there seems to be preference for larger numbers.
>
> Many recent studies that do report numbers of imputation used between 20
> and 100 data sets (subjective view), but I’ve also seen as many as a
> thousand.
>
> I guess that it depends on the amount of Monte Carlo error (the loss of
> power to for testing an association) you are willing to accept.
>
> White, Royston and Wood (2010) suggest in their Statistics in Medicine
> journal article as a rule of thumb to use “at least the percentage of
> incomplete cases” (100 times the fraction of missing information), but they
> also state that you might need more in specific settings.
>
>
>
>
> Adriaan W. Hoogendoorn, PhD
>
> Senior Researcher – Statistician
>
> M: Room MB.02, A.J. Ernststraat 1187, 1081 HL Amsterdam, The Netherlands
> T: + 31(0)20 788 4649
>
> E: [email protected]
>
> Office hours: Mo-Tu-We-Th
>
>
>
>
>
> GGZ inGeest, Onderzoek en innovatie
> Locatie A.J. Ernststraat, Amsterdam
> www.ggzingeest.nl
> <https://urldefense.proofpoint.com/v2/url?u=http-3A__www.ggzingeest.nl_&d=CwMGaQ&c=yHlS04HhBraes5BQ9ueu5zKhE7rtNXt_d012z2PA6ws&r=N9mDDDuK1isnKK-Q36bwNuZl066Rn4cNQtKxtVKMnWBnZ5yXlXHty3gF6wWXsdE6&m=uar2zvBt-CyCEgwFinsosPoZgBH_o6rJZAvxvVrWpeY&s=rOarCICWmLfxjAFAXCAKhMwIX7Cj-WlWK8neT8IgvxM&e=>
>
>
> * GGZ inGeest, samen op eigen wijze*
>
>
>
>
>
>
>
>
>
> *Van:* Impute -- Imputations in Data Analysis [mailto:[email protected].
> NORTHWESTERN.EDU] *Namens *DAVID R JOHNSON
> *Verzonden:* maandag 12 september 2016 0:13
> *Aan:* [email protected]
> *Onderwerp:* Re: Typical number of imputations
>
>
>
> My experience is that authors who use MI seldom report the number of
> imputations they used.
>
>
>
> ------------------------------------------------------------
> ------------------
>
> David R. Johnson
> Professor of Sociology, Human Development and Family Studies, and
> Demography
> Department of Sociology
> 413 Oswald Tower
> The Pennsylvania State University
> University Park, PA 16802
> 814-865-9564
> [email protected]
> ------------------------------------------------------------
> -------------------
>
>
> ------------------------------
>
> *From: *"Allison, Paul D" <[email protected]>
> *To: *"Impute" <[email protected]>
> *Sent: *Saturday, September 10, 2016 7:58:55 AM
> *Subject: *Re: Typical number of imputations
>
>
>
> Good question, but I'm not aware of any studies.
>
>
>
>
>
> Paul D. Allison, Professor
>
> Department of Sociology
>
> University of Pennsylvania
>
> 581 McNeil Building
>
> 3718 Locust Walk
>
> Philadelphia, PA 19104-6299
>
> 610-715-5702
>
> 419-818-1220 (fax)
>
> www.pauldallison.com
> <https://urldefense.proofpoint.com/v2/url?u=http-3A__www.pauldallison.com_&d=CwMFAw&c=yHlS04HhBraes5BQ9ueu5zKhE7rtNXt_d012z2PA6ws&r=N9mDDDuK1isnKK-Q36bwNuZl066Rn4cNQtKxtVKMnWBnZ5yXlXHty3gF6wWXsdE6&m=WZhkIrvV_nPE4MPWJCbcERwh_uwCepoMW9A1CIlGono&s=jhCMas8sQAOyoeHxUbvqK4sCPETcmNiEkxGRSgzeBj8&e=>
>
>
> ------------------------------
>
> *From:* Impute -- Imputations in Data Analysis <[email protected].
> NORTHWESTERN.EDU> on behalf of Paul von Hippel <
> [email protected]>
> *Sent:* Friday, September 9, 2016 11:05 PM
> *To:* [email protected]
> *Subject:* Typical number of imputations
>
>
>
> Are there studies documenting how many imputations analysts typically use
> in MI? I know the recommendations, but I'm interested in what users are
> actually doing -- and whether users are using more imputations now than
> previously.
>
>
> Best wishes,
> Paul von Hippel
> LBJ School of Public Affairs
> Sid Richardson Hall 3.251
> University of Texas, Austin
> 2315 Red River, Box Y
> Austin, TX  78712
>
>
>
> ------------------------------
> Dit e-mailbericht is uitsluitend bestemd voor de geadresseerde. Als dit
> bericht niet voor u bestemd is, wordt u verzocht dit aan de afzender te
> melden en het bericht te vernietigen. Het is niet toegestaan de inhoud van
> dit bericht verder te verspreiden of te gebruiken. Voor meer informatie
> over GGZ inGeest: www.ggzingeest.nl. Denk aan het milieu voordat u deze
> e-mail print.
>

Reply via email to