Hey Matthew, all,

This sounds like a good thing to have.
There are a number of DG2 machines where we have a small BAR and this is causing more apps to fail.

Anv currently reports 3 memory heaps to the app :

    - local device only (not host visible) -> mapped to lmem
    - device/cpu -> mapped to smem
    - local device but also host visible -> mapped to lmem

So we could use this straight away, by just not putting the I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS flag on the allocation of the first heap.

One thing I don't see in this proposal is how can we get the size of the 2 lmem heap : cpu visible, cpu not visible
We could use that to report the appropriate size to the app.
We probably want to report a new drm_i915_memory_region_info and either :
    - put one of the reserve field to use to indicate : cpu visible
    - or define a new enum value in drm_i915_gem_memory_class

Cheers,

-Lionel


On 18/02/2022 13:22, Matthew Auld wrote:
Add an entry for the new uapi needed for small BAR on DG2+.

Signed-off-by: Matthew Auld <matthew.a...@intel.com>
Cc: Thomas Hellström <thomas.hellst...@linux.intel.com>
Cc: Jon Bloomfield <jon.bloomfi...@intel.com>
Cc: Daniel Vetter <daniel.vet...@ffwll.ch>
Cc: Jordan Justen <jordan.l.jus...@intel.com>
Cc: Kenneth Graunke <kenn...@whitecape.org>
Cc: mesa-...@lists.freedesktop.org
---
  Documentation/gpu/rfc/i915_small_bar.h   | 153 +++++++++++++++++++++++
  Documentation/gpu/rfc/i915_small_bar.rst |  40 ++++++
  Documentation/gpu/rfc/index.rst          |   4 +
  3 files changed, 197 insertions(+)
  create mode 100644 Documentation/gpu/rfc/i915_small_bar.h
  create mode 100644 Documentation/gpu/rfc/i915_small_bar.rst

diff --git a/Documentation/gpu/rfc/i915_small_bar.h 
b/Documentation/gpu/rfc/i915_small_bar.h
new file mode 100644
index 000000000000..fa65835fd608
--- /dev/null
+++ b/Documentation/gpu/rfc/i915_small_bar.h
@@ -0,0 +1,153 @@
+/**
+ * struct __drm_i915_gem_create_ext - Existing gem_create behaviour, with added
+ * extension support using struct i915_user_extension.
+ *
+ * Note that in the future we want to have our buffer flags here, at least for
+ * the stuff that is immutable. Previously we would have two ioctls, one to
+ * create the object with gem_create, and another to apply various parameters,
+ * however this creates some ambiguity for the params which are considered
+ * immutable. Also in general we're phasing out the various SET/GET ioctls.
+ */
+struct __drm_i915_gem_create_ext {
+       /**
+        * @size: Requested size for the object.
+        *
+        * The (page-aligned) allocated size for the object will be returned.
+        *
+        * Note that for some devices we have might have further minimum
+        * page-size restrictions(larger than 4K), like for device local-memory.
+        * However in general the final size here should always reflect any
+        * rounding up, if for example using the 
I915_GEM_CREATE_EXT_MEMORY_REGIONS
+        * extension to place the object in device local-memory.
+        */
+       __u64 size;
+       /**
+        * @handle: Returned handle for the object.
+        *
+        * Object handles are nonzero.
+        */
+       __u32 handle;
+       /**
+        * @flags: Optional flags.
+        *
+        * Supported values:
+        *
+        * I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS - Signal to the kernel that
+        * the object will need to be accessed via the CPU.
+        *
+        * Only valid when placing objects in I915_MEMORY_CLASS_DEVICE, and
+        * only strictly required on platforms where only some of the device
+        * memory is directly visible or mappable through the CPU, like on DG2+.
+        *
+        * One of the placements MUST also be I915_MEMORY_CLASS_SYSTEM, to
+        * ensure we can always spill the allocation to system memory, if we
+        * can't place the object in the mappable part of
+        * I915_MEMORY_CLASS_DEVICE.
+        *
+        * Note that buffers that need to be captured with EXEC_OBJECT_CAPTURE,
+        * will need to enable this hint, if the object can also be placed in
+        * I915_MEMORY_CLASS_DEVICE, starting from DG2+. The execbuf call will
+        * throw an error otherwise. This also means that such objects will need
+        * I915_MEMORY_CLASS_SYSTEM set as a possible placement.
+        *
+        * Without this hint, the kernel will assume that non-mappable
+        * I915_MEMORY_CLASS_DEVICE is preferred for this object. Note that the
+        * kernel can still migrate the object to the mappable part, as a last
+        * resort, if userspace ever CPU faults this object, but this might be
+        * expensive, and so ideally should be avoided.
+        */
+#define I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS (1 << 0)
+       __u32 flags;
+       /**
+        * @extensions: The chain of extensions to apply to this object.
+        *
+        * This will be useful in the future when we need to support several
+        * different extensions, and we need to apply more than one when
+        * creating the object. See struct i915_user_extension.
+        *
+        * If we don't supply any extensions then we get the same old gem_create
+        * behaviour.
+        *
+        * For I915_GEM_CREATE_EXT_MEMORY_REGIONS usage see
+        * struct drm_i915_gem_create_ext_memory_regions.
+        *
+        * For I915_GEM_CREATE_EXT_PROTECTED_CONTENT usage see
+        * struct drm_i915_gem_create_ext_protected_content.
+        */
+#define I915_GEM_CREATE_EXT_MEMORY_REGIONS 0
+#define I915_GEM_CREATE_EXT_PROTECTED_CONTENT 1
+       __u64 extensions;
+};
+
+#define DRM_I915_QUERY_VMA_INFO        5
+
+/**
+ * struct __drm_i915_query_vma_info
+ *
+ * Given a vm and GTT address, lookup the corresponding vma, returning its set
+ * of attributes.
+ *
+ * .. code-block:: C
+ *
+ *     struct drm_i915_query_vma_info info = {};
+ *     struct drm_i915_query_item item = {
+ *             .data_ptr = (uintptr_t)&info,
+ *             .query_id = DRM_I915_QUERY_VMA_INFO,
+ *     };
+ *     struct drm_i915_query query = {
+ *             .num_items = 1,
+ *             .items_ptr = (uintptr_t)&item,
+ *     };
+ *     int err;
+ *
+ *     // Unlike some other types of queries, there is no need to first query
+ *     // the size of the data_ptr blob here, since we already know ahead of
+ *     // time how big this needs to be.
+ *     item.length = sizeof(info);
+ *
+ *     // Next we fill in the vm_id and ppGTT address of the vma we wish
+ *     // to query, before then firing off the query.
+ *     info.vm_id = vm_id;
+ *     info.offset = gtt_address;
+ *     err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
+ *     if (err || item.length < 0) ...
+ *
+ *     // If all went well we can now inspect the returned attributes.
+ *     if (info.attributes & DRM_I915_QUERY_VMA_INFO_CPU_VISIBLE) ...
+ */
+struct __drm_i915_query_vma_info {
+       /**
+        * @vm_id: The given vm id that contains the vma. The id is the value
+        * returned by the DRM_I915_GEM_VM_CREATE. See struct
+        * drm_i915_gem_vm_control.vm_id.
+        */
+       __u32 vm_id;
+       /** @pad: MBZ. */
+       __u32 pad;
+       /**
+        * @offset: The corresponding ppGTT address of the vma which the kernel
+        * will use to perform the lookup.
+        */
+       __u64 offset;
+       /**
+        * @attributes: The returned attributes for the given vma.
+        *
+        * Possible values:
+        *
+        * DRM_I915_QUERY_VMA_INFO_CPU_VISIBLE - Set if the pages backing the
+        * vma are currently CPU accessible. If this is not set then the vma is
+        * currently backed by I915_MEMORY_CLASS_DEVICE memory, which the CPU
+        * cannot directly access(this is only possible on discrete devices with
+        * a small BAR). Attempting to MMAP and fault such an object will
+        * require the kernel first synchronising any GPU work tied to the
+        * object, before then migrating the pages, either to the CPU accessible
+        * part of I915_MEMORY_CLASS_DEVICE, or I915_MEMORY_CLASS_SYSTEM, if the
+        * placements permit it. See I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS.
+        *
+        * Note that this is inherently racy.
+        */
+#define DRM_I915_QUERY_VMA_INFO_CPU_VISIBLE (1<<0)
+       __u64 attributes;
+       /** @rsvd: MBZ */
+       __u32 rsvd[4];
+};
diff --git a/Documentation/gpu/rfc/i915_small_bar.rst 
b/Documentation/gpu/rfc/i915_small_bar.rst
new file mode 100644
index 000000000000..fea92d3d69ab
--- /dev/null
+++ b/Documentation/gpu/rfc/i915_small_bar.rst
@@ -0,0 +1,40 @@
+==========================
+I915 Small BAR RFC Section
+==========================
+Starting from DG2 we will have resizable BAR support for device local-memory,
+but in some cases the final BAR size might still be smaller than the total
+local-memory size. In such cases only part of local-memory will be CPU
+accessible, while the remainder is only accessible via the GPU.
+
+I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS flag
+----------------------------------------------
+New gem_create_ext flag to tell the kernel that a BO will require CPU access.
+The becomes important when placing an object in LMEM, where underneath the
+device has a small BAR, meaning only part of it is CPU accessible. Without this
+flag the kernel will assume that CPU access is not required, and prioritize
+using the non-CPU visible portion of LMEM(if present on the device).
+
+Related to this, we now also reject any objects marked with
+EXEC_OBJECT_CAPTURE, which are also not tagged with NEEDS_CPU_ACCESS. This only
+impacts DG2+.
+
+XXX: One open here is whether we should extend the memory region query to 
return
+the CPU visible size of the region. For now the IGTs just use debugfs to query
+the size. However, if userspace sees a real need for this then extending the
+region query would be a lot nicer.
+
+.. kernel-doc:: Documentation/gpu/rfc/i915_small_bar.h
+   :functions: __drm_i915_gem_create_ext
+
+DRM_I915_QUERY_VMA_INFO query
+-----------------------------
+Query the attributes of some vma. Given a vm and GTT offset, find the
+respective vma, and return its set of attrubutes. For now we only support
+DRM_I915_QUERY_VMA_INFO_CPU_VISIBLE, which is set if the object/vma is
+currently placed in memory that is accessible by the CPU. This should always be
+set on devices where the CPU visible size of LMEM matches the probed size. If
+this is not set then CPU faulting the object will first require migrating the
+pages.
+
+.. kernel-doc:: Documentation/gpu/rfc/i915_small_bar.h
+   :functions: __drm_i915_query_vma_info
diff --git a/Documentation/gpu/rfc/index.rst b/Documentation/gpu/rfc/index.rst
index 018a8bf317a6..5b8495bdc1fd 100644
--- a/Documentation/gpu/rfc/index.rst
+++ b/Documentation/gpu/rfc/index.rst
@@ -19,3 +19,7 @@ host such documentation:
  .. toctree::
i915_scheduler.rst
+
+.. toctree::
+
+    i915_small_bar.rst


Reply via email to