[ 
https://issues.apache.org/jira/browse/ARROW-1718?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16224270#comment-16224270
 ] 

ASF GitHub Bot commented on ARROW-1718:
---------------------------------------

wesm commented on a change in pull request #1258: ARROW-1718: [C++/Python] 
Implement casts from timestamp to date32/64, properly handle NumPy 
datetime64[D] -> date32
URL: https://github.com/apache/arrow/pull/1258#discussion_r147601882
 
 

 ##########
 File path: .travis.yml
 ##########
 @@ -51,12 +51,12 @@ matrix:
     os: linux
     group: deprecated
     before_script:
-    - export CC="gcc-4.9"
 
 Review comment:
   We aren't using clang-4.0 in any other build matrix, any objections to using 
that here (we use gcc 4.9 in other builds)? 

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


> [Python] Implement casts from timestamp to date32/date64 and support in 
> Array.from_pandas
> -----------------------------------------------------------------------------------------
>
>                 Key: ARROW-1718
>                 URL: https://issues.apache.org/jira/browse/ARROW-1718
>             Project: Apache Arrow
>          Issue Type: New Feature
>          Components: Python
>            Reporter: Bryan Cutler
>            Assignee: Wes McKinney
>              Labels: pull-request-available
>             Fix For: 0.8.0
>
>
> When calling {{Array.from_pandas}} with a pandas.Series of dates and 
> specifying the desired pyarrow type, an error occurs.  If the type is not 
> specified then {{from_pandas}} will interpret the data as a timestamp type.
> {code}
> import pandas as pd
> import pyarrow as pa
> import datetime
> arr = pa.array([datetime.date(2017, 10, 23)])
> c = pa.Column.from_array("d", arr)
> s = c.to_pandas()
> print(s)
> # 0   2017-10-23
> # Name: d, dtype: datetime64[ns]
> result = pa.Array.from_pandas(s, type=pa.date32())
> print(result)
> """
> Traceback (most recent call last):
>   File "<stdin>", line 1, in <module>
>   File "pyarrow/array.pxi", line 295, in pyarrow.lib.Array.__repr__ 
> (/home/bryan/git/arrow/python/build/temp.linux-x86_64-2.7/lib.cxx:26221)
>   File 
> "/home/bryan/.local/lib/python2.7/site-packages/pyarrow-0.7.2.dev21+ng028f2cd-py2.7-linux-x86_64.egg/pyarrow/formatting.py",
>  line 28, in array_format
>     values.append(value_format(x, 0))
>   File 
> "/home/bryan/.local/lib/python2.7/site-packages/pyarrow-0.7.2.dev21+ng028f2cd-py2.7-linux-x86_64.egg/pyarrow/formatting.py",
>  line 49, in value_format
>     return repr(x)
>   File "pyarrow/scalar.pxi", line 63, in pyarrow.lib.ArrayValue.__repr__ 
> (/home/bryan/git/arrow/python/build/temp.linux-x86_64-2.7/lib.cxx:19535)
>   File "pyarrow/scalar.pxi", line 137, in pyarrow.lib.Date32Value.as_py 
> (/home/bryan/git/arrow/python/build/temp.linux-x86_64-2.7/lib.cxx:20368)
> ValueError: year is out of range
> """
> {code}



--
This message was sent by Atlassian JIRA
(v6.4.14#64029)

Reply via email to