[ 
https://issues.apache.org/jira/browse/ARROW-7809?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Antoine Pitrou updated ARROW-7809:
----------------------------------
    Summary: [R] vignette does not run o. Win 10 nor ubuntu  (was: R vignette 
does not run on Win 10 nor ubuntu)

> [R] vignette does not run on Win 10 nor ubuntu
> ----------------------------------------------
>
>                 Key: ARROW-7809
>                 URL: https://issues.apache.org/jira/browse/ARROW-7809
>             Project: Apache Arrow
>          Issue Type: Bug
>            Reporter: Zhuo Jia Dai
>            Priority: Major
>
> On Win10
> {code:java}
> bucket <- "https://ursa-labs-taxi-data.s3.us-east-2.amazonaws.com";
>  dir.create("nyc-taxi")
>  for (year in 2018:2018) {
>  if(!dir.exists(glue::glue("nyc-taxi/
> {year}/"))) {
>  dir.create(glue::glue("nyc-taxi/{year}
> /"))
>  }
> for (month in 1:12) {
>  if (month < 10)
> { month <- paste0("0", month) }
> if(!dir.exists(glue::glue("nyc-taxi/
> {year}/{month}"))) {
>  dir.create(glue::glue("nyc-taxi/{year}
> /
> {month}
> "))
>  }
>  try(download.file(
>  paste(bucket, year, month, "data.parquet", sep = "/"),
>  file.path("nyc-taxi", year, month, "data.parquet")
>  ))
>  }
>  }
> aa = arrow::open_dataset("nyc-taxi", partitioning = c("year", "month"))
> {code}
> gives error
>  
> {code:java}
> Error in dataset___FSSFactory__Make3(filesystem, selector, format, 
> partitioning) : 
>   IOError: Could not open parquet input source 
> 'nyc-taxi/2018/01/data.parquet': Couldn't deserialize thrift: 
> TProtocolException: Invalid data
> In addition: Warning message:
> {code}
> On Ubuntu, running
> {code:java}
> library(dplyr)ds = arrow::open_dataset("nyc-taxi", partitioning = c("year", 
> "month"))
> system.time(ds %>%
>               filter(total_amount > 100, year == 2015) %>%
>               select(tip_amount, total_amount, passenger_count) %>%
>               group_by(passenger_count) %>%
>               collect() %>%
>               summarize(
>                 tip_pct = median(100 * tip_amount / total_amount),
>                 n = n()
>               ) %>%
>               print())
> {code}
> gives the following segfault
> {code:java}
> *** caught segfault ***
> address (nil), cause 'memory not mapped'Traceback:
>  1: Table__to_dataframe(x, use_threads = option_use_threads())
>  2: as.data.frame.Table(scanner_builder$Finish()$ToTable())
>  3: as.data.frame(scanner_builder$Finish()$ToTable())
>  4: collect.arrow_dplyr_query(.)
>  5: collect(.)
>  6: function_list[[i]](value)
>  7: freduce(value, `_function_list`)
>  8: `_fseq`(`_lhs`)
>  9: eval(quote(`_fseq`(`_lhs`)), env, env)
> 10: eval(quote(`_fseq`(`_lhs`)), env, env)
> 11: withVisible(eval(quote(`_fseq`(`_lhs`)), env, env))
> 12: ds %>% filter(total_amount > 100, year == 2015) %>% select(tip_amount,    
>  total_amount, passenger_count) %>% group_by(passenger_count) %>%     
> collect() %>% summarize(tip_pct = median(100 * tip_amount/total_amount),     
> n = n()) %>% print()
> 13: system.time(ds %>% filter(total_amount > 100, year == 2015) %>%     
> select(tip_amount, total_amount, passenger_count) %>% 
> group_by(passenger_count) %>%     collect() %>% summarize(tip_pct = 
> median(100 * tip_amount/total_amount),     n = n()) %>% print())
> {code}
>  



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

Reply via email to