[ https://issues.apache.org/jira/browse/ARROW-8100?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17058315#comment-17058315 ]
paul hess commented on ARROW-8100: ---------------------------------- You are correct [~wesm] I should have used utcfromtimestamp in my example. The offset difference is not the issue I am trying to present however, the issue is that the output is not 1608422400 but 1608422400000 Data: ||start_date|| || |1608422400000| | > [Python] timestamp[ms] and date64 data types not working as expected on write > ----------------------------------------------------------------------------- > > Key: ARROW-8100 > URL: https://issues.apache.org/jira/browse/ARROW-8100 > Project: Apache Arrow > Issue Type: Bug > Components: Python > Affects Versions: 0.16.0, 0.15.1 > Reporter: paul hess > Priority: Major > > I expect that either timestamp[ms] or date64 will give me a millisecond > presicion datetime/timestamp as written to a parquet file, instead this is > the behavior I see: > {{ }} > >>> arr = pa.array([datetime(2020, 12, 20)]) > (have used pa.array([datetime(2020, 12, 20), type=pa.timestamp('ms')]) with > no later casting as well) > >>> arr.cast(pa.timestamp('ms'), safe=False) > <pyarrow.lib.TimestampArray object at 0x117f3d4c8> > [ > 2020-12-20 00:00:00.000 > ] > > >>> table = pa.Table.from_arrays([arr], > {{ names=["start_date"])}} > {{>>> table}} > pyarrow.Table > start_date: timestamp[us] > > {{// just to make sure}} > > {{>>> table.column("start_date").cast(pa.timestamp('ms'), safe=False)}} > <pyarrow.lib.ChunkedArray object at 0x117f5e9a8> > [ > [ > 2020-12-20 00:00:00.000 > ] > ] > > {{// just to make extra sure}} > > {{>>> schema = pa.schema([pa.field("start_date", pa.timestamp("ms"))])}} > >>> table.cast(schema, safe=False)parquet.write_table(table, > > "sldkfjasldkfj.parquet", > > coerce_timestamps="ms", > > compression="SNAPPY", > {{ allow_truncated_timestamps=True)}} > Result for the written file: > Schema: > { > "type" : "record", > "name" : "schema", > "fields" : [ { > "name" : "start_date", > "type" : [ "null", > { "type" : "long", "logicalType" : "timestamp-millis" } > ], > "default" : null > } ] > } > Data: > ||start_date|| || > |1608422400000| | > > that is a microsecond [us] value, despite casting to [ms] and setting the > appropriate config on the write_table method. If it was a millisecond > timestamp it would be accurate to translate back to a datetime with > fromtimestamp, but: > >>> from datetime import datetime > >>> > >>> > >>> > >>> > >>> datetime.fromtimestamp(1608422400000) > Traceback (most recent call last): > File "<stdin>", line 1, in <module> > ValueError: year 52938 is out of range > >>> datetime.fromtimestamp(1608422400000 /1000) > datetime.datetime(2020, 12, 19, 16, 0) > > > Ok, so then we should use date64() type, after all the docs say *_Create > instance of 64-bit date (milliseconds since UNIX epoch 1970-01-01)_* > > >>> arr = pa.array([datetime(2020, 12, 20, 0, 0, 0, 123)], type=pa.date64()) > >>> arr > <pyarrow.lib.Date64Array object at 0x11da877c8> > [ > 2020-12-20 > ] > >>> table = pa.Table.from_arrays([arr], names=["start_date"]) > >>> table > pyarrow.Table > start_date: date64[ms] > parquet.write_table(table, > "bebedabeep.parquet", > coerce_timestamps="ms", > compression="SNAPPY", > allow_truncated_timestamps=True) > > > Result for the written file: > Schema: > { > "type" : "record", > "name" : "schema", > "fields" : [ { > "name" : "start_date", > "type" : [ "null", > { "type" : "int", "logicalType" : "date" } > ], > "default" : null > } ] > } > Data: > > ||start_date|| || > |18616| | > > That is "days since UNIX epoch 1970-01-01" just like date32() type, the time > info is stripped off, we can confirm this: > >>> arr.to_pylist() > [datetime.date(2020, 12, 20)] > > How do I write a millisecond precision timestamp with pyarrow.parquet? -- This message was sent by Atlassian Jira (v8.3.4#803005)