[ 
https://issues.apache.org/jira/browse/ARROW-8100?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17058315#comment-17058315
 ] 

paul hess edited comment on ARROW-8100 at 3/13/20, 12:40 AM:
-------------------------------------------------------------

You are correct [~wesm] I should have used utcfromtimestamp in my example. The 
offset difference is not the issue I am trying to present however, the issue is 
that the output is not 1608422400 but 1608422400000 which is not the expected 
millisecond precision timestamp but the microsecond precision

 

Data:
||start_date||
|1608422400000|

 

>>> from datetime import datetime
>>> datetime.utcfromtimestamp(1608422400000)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: year is out of range


was (Author: phess):
You are correct [~wesm] I should have used utcfromtimestamp in my example. The 
offset difference is not the issue I am trying to present however, the issue is 
that the output is not 1608422400 but 1608422400000 which is not the expected 
millisecond precision timestamp but the microsecond precision

 

Data:
||start_date|| ||
|1608422400000| |

> [Python] timestamp[ms] and date64 data types not working as expected on write
> -----------------------------------------------------------------------------
>
>                 Key: ARROW-8100
>                 URL: https://issues.apache.org/jira/browse/ARROW-8100
>             Project: Apache Arrow
>          Issue Type: Bug
>          Components: Python
>    Affects Versions: 0.16.0, 0.15.1
>            Reporter: paul hess
>            Priority: Major
>
> I expect that either timestamp[ms] or date64 will give me a millisecond 
> presicion datetime/timestamp as written to a parquet file, instead this is 
> the behavior I see:
> {{ }}
> >>> arr = pa.array([datetime(2020, 12, 20)])
> (have used pa.array([datetime(2020, 12, 20), type=pa.timestamp('ms')]) with 
> no later casting as well)
> >>> arr.cast(pa.timestamp('ms'), safe=False)
> <pyarrow.lib.TimestampArray object at 0x117f3d4c8>
>  [
>  2020-12-20 00:00:00.000
>  ]
>  
> >>> table = pa.Table.from_arrays([arr],
> {{                          names=["start_date"])}}
> {{>>> table}}
>  pyarrow.Table
>  start_date: timestamp[us]
>  
> {{// just to make sure}}
>  
> {{>>> table.column("start_date").cast(pa.timestamp('ms'), safe=False)}}
>  <pyarrow.lib.ChunkedArray object at 0x117f5e9a8>
>  [
>  [
>  2020-12-20 00:00:00.000
>  ]
>  ]
>  
> {{// just to make extra sure}}
>  
> {{>>> schema = pa.schema([pa.field("start_date", pa.timestamp("ms"))])}}
> >>> table.cast(schema, safe=False)parquet.write_table(table,
>                                                                               
>                 "sldkfjasldkfj.parquet",  
>                                                                               
>                coerce_timestamps="ms", 
>                                                                               
>                 compression="SNAPPY", 
> {{                                          allow_truncated_timestamps=True)}}
> Result for the written file:
> Schema:
> {
>  "type" : "record",
>  "name" : "schema",
>  "fields" : [ {
>  "name" : "start_date",
>  "type" : [ "null",
> { "type" : "long", "logicalType" : "timestamp-millis" }
> ],
>  "default" : null
>  } ]
>  }
> Data:
> ||start_date|| ||
> |1608422400000| |
>  
> that is a microsecond [us] value, despite casting to [ms] and setting the 
> appropriate config on the write_table method. If it was a millisecond 
> timestamp it would be accurate to translate back to a datetime with 
> fromtimestamp, but:
>  >>> from datetime import datetime
>  >>>
>  >>>
>  >>>
>  >>>
>  >>> datetime.fromtimestamp(1608422400000)
>  Traceback (most recent call last):
>  File "<stdin>", line 1, in <module>
>  ValueError: year 52938 is out of range
>  >>> datetime.fromtimestamp(1608422400000 /1000)
>  datetime.datetime(2020, 12, 19, 16, 0)
>   
>  
> Ok, so then we should use date64() type, after all the docs say *_Create 
> instance of 64-bit date (milliseconds since UNIX epoch 1970-01-01)_*
>  
>  >>> arr = pa.array([datetime(2020, 12, 20, 0, 0, 0, 123)], type=pa.date64())
>  >>> arr
>  <pyarrow.lib.Date64Array object at 0x11da877c8>
>  [
>  2020-12-20
>  ]
> >>> table = pa.Table.from_arrays([arr], names=["start_date"])
>  >>> table
>  pyarrow.Table
> start_date: date64[ms]
> parquet.write_table(table,
>                                  "bebedabeep.parquet",
>                                   coerce_timestamps="ms",
>                                   compression="SNAPPY",
>                                   allow_truncated_timestamps=True)
>                                          
>   
> Result for the written file:
> Schema:
> {
>  "type" : "record",
>  "name" : "schema",
>  "fields" : [ {
>  "name" : "start_date",
>  "type" : [ "null",
> { "type" : "int", "logicalType" : "date" }
> ],
>  "default" : null
>  } ]
>  }
> Data:
>  
> ||start_date|| ||
> |18616| |
>  
>  That is "days since UNIX epoch 1970-01-01" just like date32() type, the time 
> info is stripped off, we can confirm this:
>  >>> arr.to_pylist()
>  [datetime.date(2020, 12, 20)]
>   
> How do I write a millisecond precision timestamp with pyarrow.parquet?



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

Reply via email to