[ https://issues.apache.org/jira/browse/ARROW-8566?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Neal Richardson updated ARROW-8566: ----------------------------------- Summary: [R] error when writing POSIXct to spark (was: Upgraded from r package arrow 16 to r package arrow 17 and now get an error when writing posixct to spark) > [R] error when writing POSIXct to spark > --------------------------------------- > > Key: ARROW-8566 > URL: https://issues.apache.org/jira/browse/ARROW-8566 > Project: Apache Arrow > Issue Type: Bug > Components: R > Affects Versions: 0.17.0 > Environment: #> R version 3.6.3 (2020-02-29) > #> Platform: x86_64-apple-darwin15.6.0 (64-bit) > #> Running under: macOS Mojave 10.14.6 > sparklyr::spark_version(sc) > #> [1] '2.4.5' > Reporter: Curt Bergmann > Priority: Major > > {{{{monospaced text}}``` r > library(DBI) > library(sparklyr) > library(arrow) > #> > #> Attaching package: 'arrow' > #> The following object is masked from 'package:utils': > #> > #> timestamp > sc <- spark_connect(master = "local") > sparklyr::spark_version(sc) > #> [1] '2.4.5' > x <- data.frame(y = Sys.time()) > dbWriteTable(sc, "test_posixct", x) > #> Error: org.apache.spark.SparkException: Job aborted. > #> at > org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:198) > #> at > org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:159) > #> at > org.apache.spark.sql.execution.datasources.DataSource.writeAndRead(DataSource.scala:503) > #> at > org.apache.spark.sql.execution.command.CreateDataSourceTableAsSelectCommand.saveDataIntoTable(createDataSourceTables.scala:217) > #> at > org.apache.spark.sql.execution.command.CreateDataSourceTableAsSelectCommand.run(createDataSourceTables.scala:176) > #> at > org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:104) > #> at > org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:102) > #> at > org.apache.spark.sql.execution.command.DataWritingCommandExec.doExecute(commands.scala:122) > #> at > org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131) > #> at > org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127) > #> at > org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155) > #> at > org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) > #> at > org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152) > #> at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127) > #> at > org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:83) > #> at > org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:81) > #> at > org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:676) > #> at > org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:676) > #> at > org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:80) > #> at > org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:127) > #> at > org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:75) > #> at > org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:676) > #> at > org.apache.spark.sql.DataFrameWriter.createTable(DataFrameWriter.scala:474) > #> at > org.apache.spark.sql.DataFrameWriter.saveAsTable(DataFrameWriter.scala:453) > #> at > org.apache.spark.sql.DataFrameWriter.saveAsTable(DataFrameWriter.scala:409) > #> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) > #> at > sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) > #> at > sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) > #> at java.lang.reflect.Method.invoke(Method.java:498) > #> at sparklyr.Invoke.invoke(invoke.scala:147) > #> at sparklyr.StreamHandler.handleMethodCall(stream.scala:136) > #> at sparklyr.StreamHandler.read(stream.scala:61) > #> at > sparklyr.BackendHandler$$anonfun$channelRead0$1.apply$mcV$sp(handler.scala:58) > #> at scala.util.control.Breaks.breakable(Breaks.scala:38) > #> at sparklyr.BackendHandler.channelRead0(handler.scala:38) > #> at sparklyr.BackendHandler.channelRead0(handler.scala:14) > #> at > io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:105) > #> at > io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:374) > #> at > io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:360) > #> at > io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:352) > #> at > io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:102) > #> at > io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:374) > #> at > io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:360) > #> at > io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:352) > #> at > io.netty.handler.codec.ByteToMessageDecoder.fireChannelRead(ByteToMessageDecoder.java:328) > #> at > io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:302) > #> at > io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:374) > #> at > io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:360) > #> at > io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:352) > #> at > io.netty.channel.DefaultChannelPipeline$HeadContext.channelRead(DefaultChannelPipeline.java:1422) > #> at > io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:374) > #> at > io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:360) > #> at > io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:931) > #> at > io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:163) > #> at > io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:700) > #> at > io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:635) > #> at > io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:552) > #> at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:514) > #> at > io.netty.util.concurrent.SingleThreadEventExecutor$6.run(SingleThreadEventExecutor.java:1044) > #> at > io.netty.util.internal.ThreadExecutorMap$2.run(ThreadExecutorMap.java:74) > #> at > io.netty.util.concurrent.FastThreadLocalRunnable.run(FastThreadLocalRunnable.java:30) > #> at java.lang.Thread.run(Thread.java:748) > #> Caused by: org.apache.spark.SparkException: Job aborted due to stage > failure: Task 0 in stage 1.0 failed 1 times, most recent failure: Lost task > 0.0 in stage 1.0 (TID 1, localhost, executor driver): > java.lang.UnsupportedOperationException > #> at > org.apache.spark.sql.vectorized.ArrowColumnVector.<init>(ArrowColumnVector.java:173) > #> at > sparklyr.ArrowConvertersImpl$$anon$1$$anonfun$1.apply(arrowconverters.scala:210) > #> at > sparklyr.ArrowConvertersImpl$$anon$1$$anonfun$1.apply(arrowconverters.scala:209) > #> at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) > #> at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) > #> at scala.collection.Iterator$class.foreach(Iterator.scala:891) > #> at scala.collection.AbstractIterator.foreach(Iterator.scala:1334) > #> at scala.collection.IterableLike$class.foreach(IterableLike.scala:72) > #> at scala.collection.AbstractIterable.foreach(Iterable.scala:54) > #> at scala.collection.TraversableLike$class.map(TraversableLike.scala:234) > #> at scala.collection.AbstractTraversable.map(Traversable.scala:104) > #> at > sparklyr.ArrowConvertersImpl$$anon$1.nextBatch(arrowconverters.scala:209) > #> at sparklyr.ArrowConvertersImpl$$anon$1.<init>(arrowconverters.scala:172) > #> at > sparklyr.ArrowConvertersImpl.fromPayloadIterator(arrowconverters.scala:170) > #> at > sparklyr.ArrowConvertersImpl.fromPayloadIterator(arrowconverters.scala:157) > #> at sparklyr.ArrowConverters$$anonfun$3.apply(arrowconverters.scala:293) > #> at sparklyr.ArrowConverters$$anonfun$3.apply(arrowconverters.scala:290) > #> at > org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:823) > #> at > org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:823) > #> at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52) > #> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346) > #> at org.apache.spark.rdd.RDD.iterator(RDD.scala:310) > #> at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52) > #> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346) > #> at org.apache.spark.rdd.RDD.iterator(RDD.scala:310) > #> at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90) > #> at org.apache.spark.scheduler.Task.run(Task.scala:123) > #> at > org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408) > #> at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360) > #> at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414) > #> at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) > #> at java.u > sessionInfo() > #> R version 3.6.3 (2020-02-29) > #> Platform: x86_64-apple-darwin15.6.0 (64-bit) > #> Running under: macOS Mojave 10.14.6 > #> > #> Matrix products: default > #> BLAS: > /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib > #> LAPACK: > /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib > #> > #> locale: > #> [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8 > #> > #> attached base packages: > #> [1] stats graphics grDevices utils datasets methods base > #> > #> other attached packages: > #> [1] arrow_0.17.0 sparklyr_1.2.0 DBI_1.1.0 > #> > #> loaded via a namespace (and not attached): > #> [1] Rcpp_1.0.4 compiler_3.6.3 pillar_1.4.3 dbplyr_1.4.3 > #> [5] highr_0.8 r2d3_0.2.3 base64enc_0.1-3 tools_3.6.3 > #> [9] bit_1.1-15.2 digest_0.6.25 jsonlite_1.6.1 evaluate_0.14 > #> [13] tibble_3.0.1 lifecycle_0.2.0 pkgconfig_2.0.3 rlang_0.4.5 > #> [17] rstudioapi_0.11 parallel_3.6.3 yaml_2.2.1 xfun_0.13 > #> [21] withr_2.2.0 httr_1.4.1 stringr_1.4.0 dplyr_0.8.5 > #> [25] knitr_1.28 askpass_1.1 generics_0.0.2 htmlwidgets_1.5.1 > #> [29] vctrs_0.2.4 rprojroot_1.3-2 bit64_0.9-7 tidyselect_1.0.0 > #> [33] glue_1.4.0 forge_0.2.0 R6_2.4.1 rmarkdown_2.1 > #> [37] purrr_0.3.4 magrittr_1.5 backports_1.1.6 htmltools_0.4.0 > #> [41] ellipsis_0.3.0 assertthat_0.2.1 config_0.3 stringi_1.4.6 > #> [45] openssl_1.4.1 crayon_1.3.4 > ``` > <sup>Created on 2020-04-23 by the [reprex > package](https://reprex.tidyverse.org) (v0.3.0)</sup>}} -- This message was sent by Atlassian Jira (v8.3.4#803005)