[ https://issues.apache.org/jira/browse/BEAM-12550?focusedWorklogId=672896&page=com.atlassian.jira.plugin.system.issuetabpanels:worklog-tabpanel#worklog-672896 ]
ASF GitHub Bot logged work on BEAM-12550: ----------------------------------------- Author: ASF GitHub Bot Created on: 01/Nov/21 23:23 Start Date: 01/Nov/21 23:23 Worklog Time Spent: 10m Work Description: svetakvsundhar commented on a change in pull request #15809: URL: https://github.com/apache/beam/pull/15809#discussion_r740620999 ########## File path: sdks/python/apache_beam/dataframe/frames.py ########## @@ -1430,6 +1430,72 @@ def corr(self, other, method, min_periods): [self._expr, other._expr], requires_partition_by=partitionings.Singleton(reason=reason))) + @frame_base.with_docs_from(pd.Series) + @frame_base.args_to_kwargs(pd.Series) + @frame_base.populate_defaults(pd.Series) + def skew(self, axis, skipna, level, numeric_only, **kwargs): + if level is not None: + raise NotImplementedError("per-level aggregation") + if skipna is None or skipna: + self = self.dropna() # pylint: disable=self-cls-assignment + # See the online, numerically stable formulae at + # https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Higher-order_statistics + def compute_moments(x): + n = len(x) + if n == 0: + m, s, third_moment = 0, 0, 0 + elif n < 3: + m = x.std(ddof=0)**2 * n + s = x.sum() + third_moment = (((x - x.mean())**3).sum()) + else: + m = x.std(ddof=0)**2 * n + s = x.sum() + third_moment = (((x - x.mean())**3).sum()) + return pd.DataFrame( + dict(m=[m], s=[s], n=[n], third_moment=[third_moment])) + + def combine_moments(data): + m = s = n = third_moment = 0.0 + for datum in data.itertuples(): + if datum.n == 0: + continue + elif n == 0: + m, s, n, third_moment = datum.m, datum.s, datum.n, datum.third_moment + else: + mean_b = s / n + mean_a = datum.s / datum.n + delta = mean_b - mean_a + n_a = datum.n + n_b = n + combined_n = n + datum.n + third_moment += datum.third_moment + ( + (delta**3 * ((n_a * n_b) * (n_a - n_b)) / ((combined_n)**2)) + + ((3 * delta) * ((n_a * m) - (n_b * datum.m)) / (combined_n))) + m += datum.m + delta**2 * n * datum.n / (n + datum.n) + s += datum.s + n += datum.n + + if n < 3: + return float('nan') + elif m == 0: + return float(0) Review comment: I think m2 can only be 0 if every element is equal. >> This is true since m2 is just the variance (spread of the data). In fact, if m2 is 0, I think the unbias skew will be NaN based on https://en.wikipedia.org/wiki/Skewness#Sample_skewness and a sample skew calculator I ran -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: github-unsubscr...@beam.apache.org For queries about this service, please contact Infrastructure at: us...@infra.apache.org Issue Time Tracking ------------------- Worklog Id: (was: 672896) Time Spent: 1h 40m (was: 1.5h) > Implement parallelizable skew and kurtosis > ------------------------------------------- > > Key: BEAM-12550 > URL: https://issues.apache.org/jira/browse/BEAM-12550 > Project: Beam > Issue Type: Improvement > Components: dsl-dataframe > Reporter: Brian Hulette > Assignee: Svetak Vihaan Sundhar > Priority: P3 > Time Spent: 1h 40m > Remaining Estimate: 0h > > skew and kurtosis should be parallelizable/lifftable by using a similar > [approach as std and > var|https://github.com/apache/beam/blob/a0f5e932d8a9aa491b16361abdc629b5e9a483f6/sdks/python/apache_beam/dataframe/frames.py#L1307-L1310]. > See > https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Higher-order_statistics > which has information on extending that approach to calculating the third and > fourth central moments, needed for skew and kurtosis. -- This message was sent by Atlassian Jira (v8.3.4#803005)