[ 
https://issues.apache.org/jira/browse/BEAM-12351?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17549286#comment-17549286
 ] 

Danny McCormick commented on BEAM-12351:
----------------------------------------

This issue has been migrated to https://github.com/apache/beam/issues/20892

> combine should be parallelizable in many cases
> ----------------------------------------------
>
>                 Key: BEAM-12351
>                 URL: https://issues.apache.org/jira/browse/BEAM-12351
>             Project: Beam
>          Issue Type: Improvement
>          Components: dsl-dataframe, sdk-py-core
>            Reporter: Brian Hulette
>            Priority: P3
>              Labels: dataframe-api
>
> Relevant discussion: 
> https://lists.apache.org/thread.html/r9e7d9527eb1d4c9c097c91c010a25dabf4a5f8053d50dc3b6d90d36a%40%3Cdev.beam.apache.org%3E
> Currently we require Singleton partitioning for combine() because func 
> *might* operate on the full dataset, but in many cases func is actually an 
> elementwise method. We should detect this when possible (e.g. when func is an 
> np.ufunc), and/or provide a flag to let the user indicate the function is 
> elementwise.



--
This message was sent by Atlassian Jira
(v8.20.7#820007)

Reply via email to