[ https://issues.apache.org/jira/browse/BEAM-5690?focusedWorklogId=325091&page=com.atlassian.jira.plugin.system.issuetabpanels:worklog-tabpanel#worklog-325091 ]
ASF GitHub Bot logged work on BEAM-5690: ---------------------------------------- Author: ASF GitHub Bot Created on: 08/Oct/19 13:53 Start Date: 08/Oct/19 13:53 Worklog Time Spent: 10m Work Description: echauchot commented on pull request #9567: [BEAM-5690] Fix Zero value issue with GroupByKey/CountByKey in SparkRunner URL: https://github.com/apache/beam/pull/9567#discussion_r332510266 ########## File path: runners/spark/src/test/java/org/apache/beam/runners/spark/translation/streaming/CreateStreamTest.java ########## @@ -451,6 +457,47 @@ public void testAdvanceWatermarkEqualToPositiveInfinityThrows() { source.advanceWatermarkForNextBatch(BoundedWindow.TIMESTAMP_MAX_VALUE); } + @Test + public void testInStreamingModeCountByKey() throws Exception { + Instant instant = new Instant(0); + + CreateStream<KV<Integer, Long>> kvSource = + CreateStream.of(KvCoder.of(VarIntCoder.of(), VarLongCoder.of()), batchDuration()) + .emptyBatch() + .advanceWatermarkForNextBatch(instant) + .nextBatch( + TimestampedValue.of(KV.of(1, 100L), instant.plus(Duration.standardSeconds(3L))), + TimestampedValue.of(KV.of(1, 300L), instant.plus(Duration.standardSeconds(4L)))) + .advanceWatermarkForNextBatch(instant.plus(Duration.standardSeconds(7L))) + .nextBatch( + TimestampedValue.of(KV.of(1, 400L), instant.plus(Duration.standardSeconds(8L)))) + .advanceNextBatchWatermarkToInfinity(); + + PCollection<KV<Integer, Long>> output = + p.apply("create kv Source", kvSource) + .apply( + "window input", + Window.<KV<Integer, Long>>into(FixedWindows.of(Duration.standardSeconds(3L))) + .withAllowedLateness(Duration.ZERO)) + .apply(Count.perKey()); + + PAssert.that("Wrong count value ", output) + .satisfies( + (SerializableFunction<Iterable<KV<Integer, Long>>, Void>) + input -> { + for (KV<Integer, Long> element : input) { + if (element.getKey() == 1) { + Long countValue = element.getValue(); + assertNotEquals("Count Value is 0 !!!", 0L, countValue.longValue()); Review comment: As I understood expired timers are not evicted and the fact that they are triggered entails an empty collection as output. But it is not in 100% of cases right, only in some corners cases ? I see no corner case in this test case, there should be 3 value output (one per 3s window, with timestamp 3, 4 and 8). I don't understand how this test ensures that the fix works. Is this test really failing without the fix in `SparkGroupAlsoByWindowViaWindowSet` ---------------------------------------------------------------- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. For queries about this service, please contact Infrastructure at: us...@infra.apache.org Issue Time Tracking ------------------- Worklog Id: (was: 325091) Time Spent: 1h 40m (was: 1.5h) > Issue with GroupByKey in BeamSql using SparkRunner > -------------------------------------------------- > > Key: BEAM-5690 > URL: https://issues.apache.org/jira/browse/BEAM-5690 > Project: Beam > Issue Type: Task > Components: runner-spark > Reporter: Kenneth Knowles > Priority: Major > Time Spent: 1h 40m > Remaining Estimate: 0h > > Reported on user@ > {quote}We are trying to setup a pipeline with using BeamSql and the trigger > used is default (AfterWatermark crosses the window). > Below is the pipeline: > > KafkaSource (KafkaIO) > ---> Windowing (FixedWindow 1min) > ---> BeamSql > ---> KafkaSink (KafkaIO) > > We are using Spark Runner for this. > The BeamSql query is: > {code}select Col3, count(*) as count_col1 from PCOLLECTION GROUP BY Col3{code} > We are grouping by Col3 which is a string. It can hold values string[0-9]. > > The records are getting emitted out at 1 min to kafka sink, but the output > record in kafka is not as expected. > Below is the output observed: (WST and WET are indicators for window start > time and window end time) > {code} > {"count_col1":1,"Col3":"string5","WST":"2018-10-09 09-55-00 0000 > +0000","WET":"2018-10-09 09-56-00 0000 +0000"} > {"count_col1":3,"Col3":"string7","WST":"2018-10-09 09-55-00 0000 > +0000","WET":"2018-10-09 09-56-00 0000 +0000"} > {"count_col1":2,"Col3":"string8","WST":"2018-10-09 09-55-00 0000 > +0000","WET":"2018-10-09 09-56-00 0000 +0000"} > {"count_col1":1,"Col3":"string2","WST":"2018-10-09 09-55-00 0000 > +0000","WET":"2018-10-09 09-56-00 0000 +0000"} > {"count_col1":1,"Col3":"string6","WST":"2018-10-09 09-55-00 0000 > +0000","WET":"2018-10-09 09-56-00 0000 +0000"} > {"count_col1":0,"Col3":"string6","WST":"2018-10-09 09-55-00 0000 > +0000","WET":"2018-10-09 09-56-00 0000 +0000"} > {"count_col1":0,"Col3":"string6","WST":"2018-10-09 09-55-00 0000 > +0000","WET":"2018-10-09 09-56-00 0000 +0000"} > {"count_col1":0,"Col3":"string6","WST":"2018-10-09 09-55-00 0000 > +0000","WET":"2018-10-09 09-56-00 0000 +0000"} > {"count_col1":0,"Col3":"string6","WST":"2018-10-09 09-55-00 0000 > +0000","WET":"2018-10-09 09-56-00 0000 +0000"} > {"count_col1":0,"Col3":"string6","WST":"2018-10-09 09-55-00 0000 > +0000","WET":"2018-10-09 09-56-00 0000 +0000"} > {"count_col1":0,"Col3":"string6","WST":"2018-10-09 09-55-00 0000 > +0000","WET":"2018-10-09 09-56-00 0} > {code} > {quote} -- This message was sent by Atlassian Jira (v8.3.4#803005)