[ https://issues.apache.org/jira/browse/BEAM-7926?focusedWorklogId=330662&page=com.atlassian.jira.plugin.system.issuetabpanels:worklog-tabpanel#worklog-330662 ]
ASF GitHub Bot logged work on BEAM-7926: ---------------------------------------- Author: ASF GitHub Bot Created on: 18/Oct/19 17:18 Start Date: 18/Oct/19 17:18 Worklog Time Spent: 10m Work Description: KevinGG commented on pull request #9741: [BEAM-7926] Visualize PCollection URL: https://github.com/apache/beam/pull/9741#discussion_r336593108 ########## File path: sdks/python/apache_beam/runners/interactive/display/pcoll_visualization.py ########## @@ -0,0 +1,258 @@ +# +# Licensed to the Apache Software Foundation (ASF) under one or more +# contributor license agreements. See the NOTICE file distributed with +# this work for additional information regarding copyright ownership. +# The ASF licenses this file to You under the Apache License, Version 2.0 +# (the "License"); you may not use this file except in compliance with +# the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +"""Module visualizes PCollection data. + +For internal use only; no backwards-compatibility guarantees. +Only works with Python 3.5+. +""" +from __future__ import absolute_import + +import base64 +import logging +from datetime import timedelta + +from facets_overview.generic_feature_statistics_generator import GenericFeatureStatisticsGenerator +from IPython.core.display import HTML +from IPython.core.display import Javascript +from IPython.core.display import display +from IPython.core.display import display_javascript +from IPython.core.display import update_display +from pandas.io.json import json_normalize +from timeloop import Timeloop + +from apache_beam import pvalue +from apache_beam.runners.interactive import interactive_environment as ie +from apache_beam.runners.interactive import pipeline_instrument as instr + +# jsons doesn't support < Python 3.5. Work around with json for legacy tests. +try: + import jsons + _pv_jsons_load = jsons.load + _pv_jsons_dump = jsons.dump +except ImportError: + import json + _pv_jsons_load = json.load + _pv_jsons_dump = json.dump + +# 1-d types that need additional normalization to be compatible with DataFrame. +_one_dimension_types = (int, float, str, bool, list, tuple) + +_DIVE_SCRIPT_TEMPLATE = """ + document.querySelector("#{display_id}").data = {jsonstr};""" +_DIVE_HTML_TEMPLATE = """ + <script src="https://cdnjs.cloudflare.com/ajax/libs/webcomponentsjs/1.3.3/webcomponents-lite.js"></script> + <link rel="import" href="https://raw.githubusercontent.com/PAIR-code/facets/1.0.0/facets-dist/facets-jupyter.html"> + <facets-dive sprite-image-width="{sprite_size}" sprite-image-height="{sprite_size}" id="{display_id}" height="600"></facets-dive> + <script> + document.querySelector("#{display_id}").data = {jsonstr}; + </script>""" +_OVERVIEW_SCRIPT_TEMPLATE = """ + document.querySelector("#{display_id}").protoInput = "{protostr}"; + """ +_OVERVIEW_HTML_TEMPLATE = """ + <script src="https://cdnjs.cloudflare.com/ajax/libs/webcomponentsjs/1.3.3/webcomponents-lite.js"></script> + <link rel="import" href="https://raw.githubusercontent.com/PAIR-code/facets/1.0.0/facets-dist/facets-jupyter.html"> + <facets-overview id="{display_id}"></facets-overview> + <script> + document.querySelector("#{display_id}").protoInput = "{protostr}"; + </script>""" +_DATAFRAME_PAGINATION_TEMPLATE = """ + <script src="https://ajax.googleapis.com/ajax/libs/jquery/2.2.2/jquery.min.js"></script> + <script src="https://cdn.datatables.net/1.10.16/js/jquery.dataTables.js"></script> + <link rel="stylesheet" href="https://cdn.datatables.net/1.10.16/css/jquery.dataTables.css"> + {dataframe_html} + <script> + $("#{table_id}").DataTable(); + </script>""" + + +def visualize(pcoll, dynamical_plotting_interval=None): + """Visualizes the data of a given PCollection. Optionally enables dynamical + plotting with interval in seconds if the PCollection is being produced by a + running pipeline or the pipeline is streaming indefinitely. The function + always returns immediately and is asynchronous when dynamical plotting is on. + + If dynamical plotting enabled, the visualization is updated continuously until + the pipeline producing the PCollection is in an end state. The visualization + would be anchored to the notebook cell output area. The function + asynchronously returns a handle to the visualization job immediately. The user + could manually do:: + + # In one notebook cell, enable dynamical plotting every 1 second: + handle = visualize(pcoll, dynamical_plotting_interval=1) Review comment: Thanks, I'll go for it and change it from everywhere. ---------------------------------------------------------------- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. For queries about this service, please contact Infrastructure at: us...@infra.apache.org Issue Time Tracking ------------------- Worklog Id: (was: 330662) Time Spent: 5h (was: 4h 50m) > Visualize PCollection with Interactive Beam > ------------------------------------------- > > Key: BEAM-7926 > URL: https://issues.apache.org/jira/browse/BEAM-7926 > Project: Beam > Issue Type: New Feature > Components: runner-py-interactive > Reporter: Ning Kang > Assignee: Ning Kang > Priority: Major > Time Spent: 5h > Remaining Estimate: 0h > > Support auto plotting / charting of materialized data of a given PCollection > with Interactive Beam. > Say an Interactive Beam pipeline defined as > p = create_pipeline() > pcoll = p | 'Transform' >> transform() > The use can call a single function and get auto-magical charting of the data > as materialized pcoll. > e.g., visualize(pcoll) -- This message was sent by Atlassian Jira (v8.3.4#803005)