[ 
https://issues.apache.org/jira/browse/BEAM-7926?focusedWorklogId=335833&page=com.atlassian.jira.plugin.system.issuetabpanels:worklog-tabpanel#worklog-335833
 ]

ASF GitHub Bot logged work on BEAM-7926:
----------------------------------------

                Author: ASF GitHub Bot
            Created on: 30/Oct/19 00:13
            Start Date: 30/Oct/19 00:13
    Worklog Time Spent: 10m 
      Work Description: KevinGG commented on pull request #9741: [BEAM-7926] 
Visualize PCollection
URL: https://github.com/apache/beam/pull/9741#discussion_r340383572
 
 

 ##########
 File path: 
sdks/python/apache_beam/runners/interactive/display/pcoll_visualization.py
 ##########
 @@ -0,0 +1,269 @@
+#
+# Licensed to the Apache Software Foundation (ASF) under one or more
+# contributor license agreements.  See the NOTICE file distributed with
+# this work for additional information regarding copyright ownership.
+# The ASF licenses this file to You under the Apache License, Version 2.0
+# (the "License"); you may not use this file except in compliance with
+# the License.  You may obtain a copy of the License at
+#
+#    http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+"""Module visualizes PCollection data.
+
+For internal use only; no backwards-compatibility guarantees.
+Only works with Python 3.5+.
+"""
+from __future__ import absolute_import
+
+import base64
+import logging
+from datetime import timedelta
+
+from pandas.io.json import json_normalize
+
+from apache_beam import pvalue
+from apache_beam.runners.interactive import interactive_environment as ie
+from apache_beam.runners.interactive import pipeline_instrument as instr
+
+try:
+  import jsons  # pylint: disable=import-error
+  from IPython import get_ipython  # pylint: disable=import-error
+  from IPython.core.display import HTML  # pylint: disable=import-error
+  from IPython.core.display import Javascript  # pylint: disable=import-error
+  from IPython.core.display import display  # pylint: disable=import-error
+  from IPython.core.display import display_javascript  # pylint: 
disable=import-error
+  from IPython.core.display import update_display  # pylint: 
disable=import-error
+  from facets_overview.generic_feature_statistics_generator import 
GenericFeatureStatisticsGenerator  # pylint: disable=import-error
+  from timeloop import Timeloop  # pylint: disable=import-error
+
+  if get_ipython():
+    _pcoll_visualization_ready = True
+  else:
+    _pcoll_visualization_ready = False
+except ImportError:
+  _pcoll_visualization_ready = False
+
+# 1-d types that need additional normalization to be compatible with DataFrame.
+_one_dimension_types = (int, float, str, bool, list, tuple)
+
+_DIVE_SCRIPT_TEMPLATE = """
+            document.querySelector("#{display_id}").data = {jsonstr};"""
+_DIVE_HTML_TEMPLATE = """
+            <script 
src="https://cdnjs.cloudflare.com/ajax/libs/webcomponentsjs/1.3.3/webcomponents-lite.js";></script>
+            <link rel="import" 
href="https://raw.githubusercontent.com/PAIR-code/facets/1.0.0/facets-dist/facets-jupyter.html";>
+            <facets-dive sprite-image-width="{sprite_size}" 
sprite-image-height="{sprite_size}" id="{display_id}" 
height="600"></facets-dive>
+            <script>
+              document.querySelector("#{display_id}").data = {jsonstr};
+            </script>"""
+_OVERVIEW_SCRIPT_TEMPLATE = """
+              document.querySelector("#{display_id}").protoInput = 
"{protostr}";
+              """
+_OVERVIEW_HTML_TEMPLATE = """
+            <script 
src="https://cdnjs.cloudflare.com/ajax/libs/webcomponentsjs/1.3.3/webcomponents-lite.js";></script>
+            <link rel="import" 
href="https://raw.githubusercontent.com/PAIR-code/facets/1.0.0/facets-dist/facets-jupyter.html";>
+            <facets-overview id="{display_id}"></facets-overview>
+            <script>
+              document.querySelector("#{display_id}").protoInput = 
"{protostr}";
+            </script>"""
+_DATAFRAME_PAGINATION_TEMPLATE = """
+            <script 
src="https://ajax.googleapis.com/ajax/libs/jquery/2.2.2/jquery.min.js";></script>
 
+            <script 
src="https://cdn.datatables.net/1.10.16/js/jquery.dataTables.js";></script> 
+            <link rel="stylesheet" 
href="https://cdn.datatables.net/1.10.16/css/jquery.dataTables.css";>
+            {dataframe_html}
+            <script>
+              $("#{table_id}").DataTable();
+            </script>"""
+
+
+def visualize(pcoll, dynamic_plotting_interval=None):
 
 Review comment:
   Yes, I'll mark it as experimental! Actually the whole module is marked as 
`For internal use only; no backwards-compatibility guarantees.`
   
   For renaming, we only need to touch the `visualize()` function that has not 
been implemented in module `interactive_beam`. Since a notebook user should 
only use APIs provided in that module.
   
   
   
 
----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


Issue Time Tracking
-------------------

    Worklog Id:     (was: 335833)
    Time Spent: 17h 50m  (was: 17h 40m)

> Visualize PCollection with Interactive Beam
> -------------------------------------------
>
>                 Key: BEAM-7926
>                 URL: https://issues.apache.org/jira/browse/BEAM-7926
>             Project: Beam
>          Issue Type: New Feature
>          Components: runner-py-interactive
>            Reporter: Ning Kang
>            Assignee: Ning Kang
>            Priority: Major
>          Time Spent: 17h 50m
>  Remaining Estimate: 0h
>
> Support auto plotting / charting of materialized data of a given PCollection 
> with Interactive Beam.
> Say an Interactive Beam pipeline defined as
> p = create_pipeline()
> pcoll = p | 'Transform' >> transform()
> The use can call a single function and get auto-magical charting of the data 
> as materialized pcoll.
> e.g., visualize(pcoll)



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

Reply via email to