[ https://issues.apache.org/jira/browse/CALCITE-6400?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17843520#comment-17843520 ]
Caican Cai commented on CALCITE-6400: ------------------------------------- thank you > map_entries does not allow null as a map key value > -------------------------------------------------- > > Key: CALCITE-6400 > URL: https://issues.apache.org/jira/browse/CALCITE-6400 > Project: Calcite > Issue Type: Bug > Components: core > Affects Versions: 1.36.0 > Reporter: Caican Cai > Priority: Major > Labels: pull-request-available > Fix For: 1.37.0 > > > {code:java} > scala> val df = spark.sql("select map_entries(map('foo', 1, null, 2.0))") > df: org.apache.spark.sql.DataFrame = [map_entries(map(foo, 1, NULL, 2.0)): > array<struct<key:string,value:decimal(11,1)>>] > scala> df.show() > org.apache.spark.SparkRuntimeException: [NULL_MAP_KEY] Cannot use null as map > key. > at > org.apache.spark.sql.errors.QueryExecutionErrors$.nullAsMapKeyNotAllowedError(QueryExecutionErrors.scala:445) > at > org.apache.spark.sql.catalyst.util.ArrayBasedMapBuilder.put(ArrayBasedMapBuilder.scala:56) > at > org.apache.spark.sql.catalyst.expressions.CreateMap.eval(complexTypeCreator.scala:248) > at > org.apache.spark.sql.catalyst.expressions.UnaryExpression.eval(Expression.scala:542) > at > org.apache.spark.sql.catalyst.expressions.UnaryExpression.eval(Expression.scala:542) > at > org.apache.spark.sql.catalyst.optimizer.ConstantFolding$.org$apache$spark$sql$catalyst$optimizer$ConstantFolding$$constantFolding(expressions.scala:80) > at > org.apache.spark.sql.catalyst.optimizer.ConstantFolding$.$anonfun$constantFolding$4(expressions.scala:90) > at > org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren(TreeNode.scala:1249) > at > org.apache.spark.sql.catalyst.trees.UnaryLike.mapChildren$(TreeNode.scala:1248) > at > org.apache.spark.sql.catalyst.expressions.UnaryExpression.mapChildren(Expression.scala:532) > at > org.apache.spark.sql.catalyst.optimizer.ConstantFolding$.org$apache$spark$sql$catalyst$optimizer$ConstantFolding$$constantFolding(expressions.scala:90) > at > org.apache.spark.sql.catalyst.optimizer.ConstantFolding$$anonfun$apply$1.$anonfun$applyOrElse$1(expressions.scala:94) > at > org.apache.spark.sql.catalyst.plans.QueryPlan.$anonfun$mapExpressions$1(QueryPlan.scala:207) > at > org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:104) > at > org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpression$1(QueryPlan.scala:207) > at > org.apache.spark.sql.catalyst.plans.QueryPlan.recursiveTransform$1(QueryPlan.scala:218) > at > org.apache.spark.sql.catalyst.plans.QueryPlan.$anonfun$mapExpressions$3(QueryPlan.scala:223) > at > scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:286) > at scala.collection.immutable.List.foreach(List.scala:431) > at scala.collection.TraversableLike.map(TraversableLike.scala:286) > at scala.collection.TraversableLike.map$(TraversableLike.scala:279) > at scala.collection.immutable.List.map(List.scala:305) > at > org.apache.spark.sql.catalyst.plans.QueryPlan.recursiveTransform$1(QueryPlan.scala:223) > at > org.apache.spark.sql.catalyst.plans.QueryPlan.$anonfun$mapExpressions$4(QueryPlan.scala:228) > at > org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:355) > at > org.apache.spark.sql.catalyst.plans.QueryPlan.mapExpressions(QueryPlan.scala:228) > at > org.apache.spark.sql.catalyst.optimizer.ConstantFolding$$anonfun$apply$1.applyOrElse(expressions.scala:94) > at > org.apache.spark.sql.catalyst.optimizer.ConstantFolding$$anonfun$apply$1.applyOrElse(expressions.scala:93) > at > org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$1(TreeNode.scala:512) > at > org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:104) > at > org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:512) > at > org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.org$apache$spark$sql$catalyst$plans$logical$AnalysisHelper$$super$transformDownWithPruning(LogicalPlan.scala:31) > at > org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning(AnalysisHelper.scala:267) > at > org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning$(AnalysisHelper.scala:263) > at > org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:31) > at > org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:31) > at > org.apache.spark.sql.catalyst.trees.TreeNode.transformWithPruning(TreeNode.scala:478) > at > org.apache.spark.sql.catalyst.optimizer.ConstantFolding$.apply(expressions.scala:93) > at > org.apache.spark.sql.catalyst.optimizer.ConstantFolding$.apply(expressions.scala:46) > at > org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$2(RuleExecutor.scala:222) > at > scala.collection.LinearSeqOptimized.foldLeft(LinearSeqOptimized.scala:126) > at > scala.collection.LinearSeqOptimized.foldLeft$(LinearSeqOptimized.scala:122) > at scala.collection.immutable.List.foldLeft(List.scala:91) > at > org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$1(RuleExecutor.scala:219) > at > org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$1$adapted(RuleExecutor.scala:211) > at scala.collection.immutable.List.foreach(List.scala:431) > at > org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:211) > at > org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$executeAndTrack$1(RuleExecutor.scala:182) > at > org.apache.spark.sql.catalyst.QueryPlanningTracker$.withTracker(QueryPlanningTracker.scala:88) > at > org.apache.spark.sql.catalyst.rules.RuleExecutor.executeAndTrack(RuleExecutor.scala:182) > at > org.apache.spark.sql.execution.QueryExecution.$anonfun$optimizedPlan$1(QueryExecution.scala:143) > at > org.apache.spark.sql.catalyst.QueryPlanningTracker.measurePhase(QueryPlanningTracker.scala:111) > at > org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$2(QueryExecution.scala:202) > at > org.apache.spark.sql.execution.QueryExecution$.withInternalError(QueryExecution.scala:526) > at > org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase$1(QueryExecution.scala:202) > at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:827) > at > org.apache.spark.sql.execution.QueryExecution.executePhase(QueryExecution.scala:201) > at > org.apache.spark.sql.execution.QueryExecution.optimizedPlan$lzycompute(QueryExecution.scala:139) > at > org.apache.spark.sql.execution.QueryExecution.optimizedPlan(QueryExecution.scala:135) > at > org.apache.spark.sql.execution.QueryExecution.assertOptimized(QueryExecution.scala:153) > at > org.apache.spark.sql.execution.QueryExecution.executedPlan$lzycompute(QueryExecution.scala:171) > at > org.apache.spark.sql.execution.QueryExecution.executedPlan(QueryExecution.scala:168) > at > org.apache.spark.sql.execution.QueryExecution.simpleString(QueryExecution.scala:221) > at > org.apache.spark.sql.execution.QueryExecution.org$apache$spark$sql$execution$QueryExecution$$explainString(QueryExecution.scala:266) > at > org.apache.spark.sql.execution.QueryExecution.explainString(QueryExecution.scala:235) > at > org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$6(SQLExecution.scala:112) > at > org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:195) > at > org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:103) > at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:827) > at > org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:65) > at org.apache.spark.sql.Dataset.withAction(Dataset.scala:4204) > at org.apache.spark.sql.Dataset.head(Dataset.scala:3200) > at org.apache.spark.sql.Dataset.take(Dataset.scala:3421) > at org.apache.spark.sql.Dataset.getRows(Dataset.scala:283) > at org.apache.spark.sql.Dataset.showString(Dataset.scala:322) > at org.apache.spark.sql.Dataset.show(Dataset.scala:807) > at org.apache.spark.sql.Dataset.show(Dataset.scala:766) > at org.apache.spark.sql.Dataset.show(Dataset.scala:775) > ... 47 elided > {code} -- This message was sent by Atlassian Jira (v8.20.10#820010)