[ 
https://issues.apache.org/jira/browse/MATH-449?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=13088843#comment-13088843
 ] 

Phil Steitz commented on MATH-449:
----------------------------------

We could allow NaNs in the input vectors and skip updating the bivariate 
covariances for pairs including a NaN.

> Storeless covariance
> --------------------
>
>                 Key: MATH-449
>                 URL: https://issues.apache.org/jira/browse/MATH-449
>             Project: Commons Math
>          Issue Type: Improvement
>            Reporter: Patrick Meyer
>            Assignee: Phil Steitz
>             Fix For: 3.1
>
>         Attachments: MATH-449.patch
>
>   Original Estimate: 168h
>  Remaining Estimate: 168h
>
> Currently there is no storeless version for computing the covariance. 
> However, Pebay (2008) describes algorithms for on-line covariance 
> computations, [http://infoserve.sandia.gov/sand_doc/2008/086212.pdf]. I have 
> provided a simple class for implementing this algorithm. It would be nice to 
> have this integrated into org.apache.commons.math.stat.correlation.Covariance.
> {code}
> //This code is granted for inclusion in the Apache Commons under the terms of 
> the ASL.
> public class StorelessCovariance{
>     private double deltaX = 0.0;
>     private double deltaY = 0.0;
>     private double meanX = 0.0;
>     private double meanY = 0.0;
>     private double N=0;
>     private Double covarianceNumerator=0.0;
>     private boolean unbiased=true;
>     public Covariance(boolean unbiased){
>       this.unbiased = unbiased;
>     }
>     public void increment(Double x, Double y){
>         if(x!=null & y!=null){
>             N++;
>             deltaX = x - meanX;
>             deltaY = y - meanY;
>             meanX += deltaX/N;
>             meanY += deltaY/N;
>             covarianceNumerator += ((N-1.0)/N)*deltaX*deltaY;
>         }
>         
>     }
>     public Double getResult(){
>         if(unbiased){
>             return covarianceNumerator/(N-1.0);
>         }else{
>             return covarianceNumerator/N;
>         }
>     }   
> }
> {code}

--
This message is automatically generated by JIRA.
For more information on JIRA, see: http://www.atlassian.com/software/jira

        

Reply via email to