Github user bowenli86 commented on a diff in the pull request: https://github.com/apache/flink/pull/5342#discussion_r164639453 --- Diff: flink-streaming-java/src/main/java/org/apache/flink/streaming/api/functions/TimeBoundedStreamJoinOperator.java --- @@ -0,0 +1,398 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.flink.streaming.api.functions; + +import org.apache.flink.annotation.VisibleForTesting; +import org.apache.flink.api.common.state.MapState; +import org.apache.flink.api.common.state.MapStateDescriptor; +import org.apache.flink.api.common.state.ValueState; +import org.apache.flink.api.common.state.ValueStateDescriptor; +import org.apache.flink.api.common.typeutils.TypeSerializer; +import org.apache.flink.api.common.typeutils.base.BooleanSerializer; +import org.apache.flink.api.common.typeutils.base.ListSerializer; +import org.apache.flink.api.common.typeutils.base.LongSerializer; +import org.apache.flink.api.java.tuple.Tuple2; +import org.apache.flink.api.java.tuple.Tuple3; +import org.apache.flink.api.java.typeutils.runtime.TupleSerializer; +import org.apache.flink.streaming.api.operators.AbstractUdfStreamOperator; +import org.apache.flink.streaming.api.operators.TimestampedCollector; +import org.apache.flink.streaming.api.operators.TwoInputStreamOperator; +import org.apache.flink.streaming.api.watermark.Watermark; +import org.apache.flink.streaming.runtime.streamrecord.StreamRecord; + +import java.util.ArrayList; +import java.util.List; + +import static org.apache.flink.api.common.typeinfo.BasicTypeInfo.LONG_TYPE_INFO; + +// TODO: Make bucket granularity adaptable +/** + * A TwoInputStreamOperator to execute time-bounded stream inner joins. + * + * <p>By using a configurable lower and upper bound this operator will emit exactly those pairs + * (T1, T2) where t2.ts â [T1.ts + lowerBound, T1.ts + upperBound]. Both the lower and the + * upper bound can be configured to be either inclusive or exclusive. + * + * <p>As soon as elements are joined they are passed to a user-defined {@link JoinedProcessFunction}, + * as a {@link Tuple2}, with f0 being the left element and f1 being the right element + * + * @param <T1> The type of the elements in the left stream + * @param <T2> The type of the elements in the right stream + * @param <OUT> The output type created by the user-defined function + */ +public class TimeBoundedStreamJoinOperator<T1, T2, OUT> + extends AbstractUdfStreamOperator<OUT, JoinedProcessFunction<T1, T2, OUT>> + implements TwoInputStreamOperator<T1, T2, OUT> { + + private final long lowerBound; + private final long upperBound; + + private final long inverseLowerBound; + private final long inverseUpperBound; + + private final boolean lowerBoundInclusive; + private final boolean upperBoundInclusive; + + private final long bucketGranularity = 1; + + private static final String LEFT_BUFFER = "LEFT_BUFFER"; + private static final String RIGHT_BUFFER = "RIGHT_BUFFER"; + private static final String LAST_CLEANUP_LEFT = "LAST_CLEANUP_LEFT"; + private static final String LAST_CLEANUP_RIGHT = "LAST_CLEANUP_RIGHT"; + + private transient ValueState<Long> lastCleanupRightBuffer; + private transient ValueState<Long> lastCleanupLeftBuffer; + + private transient MapState<Long, List<Tuple3<T1, Long, Boolean>>> leftBuffer; + private transient MapState<Long, List<Tuple3<T2, Long, Boolean>>> rightBuffer; + + private final TypeSerializer<T1> leftTypeSerializer; + private final TypeSerializer<T2> rightTypeSerializer; + + private transient TimestampedCollector<OUT> collector; + + private ContextImpl context; + + /** + * Creates a new TimeBoundedStreamJoinOperator. + * + * @param lowerBound The lower bound for evaluating if elements should be joined + * @param upperBound The upper bound for evaluating if elements should be joined + * @param lowerBoundInclusive Whether or not to include elements where the timestamp matches + * the lower bound + * @param upperBoundInclusive Whether or not to include elements where the timestamp matches + * the upper bound + * @param udf A user-defined {@link JoinedProcessFunction} that gets called + * whenever two elements of T1 and T2 are joined + */ + public TimeBoundedStreamJoinOperator( + long lowerBound, + long upperBound, + boolean lowerBoundInclusive, + boolean upperBoundInclusive, + TypeSerializer<T1> leftTypeSerializer, + TypeSerializer<T2> rightTypeSerializer, + JoinedProcessFunction<T1, T2, OUT> udf + ) { + + super(udf); + + this.lowerBound = lowerBound; + this.upperBound = upperBound; + + this.inverseLowerBound = -1 * upperBound; + this.inverseUpperBound = -1 * lowerBound; + + this.lowerBoundInclusive = lowerBoundInclusive; + this.upperBoundInclusive = upperBoundInclusive; + this.leftTypeSerializer = leftTypeSerializer; + this.rightTypeSerializer = rightTypeSerializer; + } + + @Override + public void open() throws Exception { + super.open(); + collector = new TimestampedCollector<>(output); + context = new ContextImpl(userFunction); + + Class<Tuple3<T1, Long, Boolean>> leftTypedTuple = + (Class<Tuple3<T1, Long, Boolean>>) (Class<?>) Tuple3.class; + + TupleSerializer<Tuple3<T1, Long, Boolean>> leftTupleSerializer = new TupleSerializer<>( + leftTypedTuple, + new TypeSerializer[]{ + leftTypeSerializer, + LongSerializer.INSTANCE, + BooleanSerializer.INSTANCE + } + ); + + Class<Tuple3<T2, Long, Boolean>> rightTypedTuple = + (Class<Tuple3<T2, Long, Boolean>>) (Class<?>) Tuple3.class; + + TupleSerializer<Tuple3<T2, Long, Boolean>> rightTupleSerializer = new TupleSerializer<>( + rightTypedTuple, + new TypeSerializer[]{ + rightTypeSerializer, + LongSerializer.INSTANCE, + BooleanSerializer.INSTANCE + } + ); + + this.leftBuffer = getRuntimeContext().getMapState(new MapStateDescriptor<>( + LEFT_BUFFER, + LongSerializer.INSTANCE, + new ListSerializer<>(leftTupleSerializer) + )); + + this.rightBuffer = getRuntimeContext().getMapState(new MapStateDescriptor<>( + RIGHT_BUFFER, + LongSerializer.INSTANCE, + new ListSerializer<>(rightTupleSerializer) + )); + + this.lastCleanupRightBuffer = getRuntimeContext().getState(new ValueStateDescriptor<>( + LAST_CLEANUP_RIGHT, + LONG_TYPE_INFO + )); + + this.lastCleanupLeftBuffer = getRuntimeContext().getState(new ValueStateDescriptor<>( + LAST_CLEANUP_LEFT, + LONG_TYPE_INFO + )); + } + + /** + * Process a {@link StreamRecord} from the left stream. Whenever an {@link StreamRecord} + * arrives at the left stream, it will get added to the left buffer. Possible join candidates + * for that element will be looked up from the right buffer and if the pair lies within the + * user defined boundaries, it gets collected. + * + * @param record An incoming record to be joined + * @throws Exception Can throw an Exception during state access + */ + @Override + public void processElement1(StreamRecord<T1> record) throws Exception { + + long leftTs = record.getTimestamp(); + T1 leftValue = record.getValue(); + + addToLeftBuffer(leftValue, leftTs); + + long min = leftTs + lowerBound; + long max = leftTs + upperBound; + + // TODO: Adapt to different bucket sizes here + // Go over all buckets that are within the time bounds + for (long i = min; i <= max; i++) { + List<Tuple3<T2, Long, Boolean>> fromBucket = rightBuffer.get(i); + if (fromBucket != null) { + + // check for each element in current bucket if it should be joined + for (Tuple3<T2, Long, Boolean> tuple : fromBucket) { + if (shouldBeJoined(leftTs, tuple.f1)) { + + // collect joined tuple with left timestamp + collect(leftValue, tuple.f0, leftTs, tuple.f1); + } + } + } + } + } + + /** + * Process a {@link StreamRecord} from the right stream. Whenever a {@link StreamRecord} + * arrives at the right stream, it will get added to the right buffer. Possible join candidates + * for that element will be looked up from the left buffer and if the pair lies within the user + * defined boundaries, it gets collected. + * + * @param record An incoming record to be joined + * @throws Exception Can throw an exception during state access + */ + @Override + public void processElement2(StreamRecord<T2> record) throws Exception { + + long rightTs = record.getTimestamp(); + T2 rightElem = record.getValue(); + + addToRightBuffer(rightElem, rightTs); + + long min = rightTs + inverseLowerBound; + long max = rightTs + inverseUpperBound; + + // TODO: Adapt to different bucket sizes here + // Go over all buckets that are within the time bounds + for (long i = min; i <= max; i++) { + List<Tuple3<T1, Long, Boolean>> fromBucket = leftBuffer.get(i); + if (fromBucket != null) { + + // check for each element in current bucket if it should be joined + for (Tuple3<T1, Long, Boolean> tuple : fromBucket) { + if (shouldBeJoined(tuple.f1, rightTs)) { + + // collect joined tuple with left timestamp + collect(tuple.f0, rightElem, tuple.f1, rightTs); + } + } + } + } + } + + @Override + public void processWatermark(Watermark mark) throws Exception { + + // remove from both sides all those elements where the timestamp is less than the lower + // bound, because they are not considered for joining anymore + removeFromLhsUntil(mark.getTimestamp() + inverseLowerBound); + removeFromRhsUntil(mark.getTimestamp() + lowerBound); + + if (timeServiceManager != null) { + timeServiceManager.advanceWatermark(mark); + } + + output.emitWatermark(new Watermark(mark.getTimestamp() - getWatermarkDelay())); + } + + private void collect(T1 left, T2 right, long leftTs, long rightTs) throws Exception { + collector.setAbsoluteTimestamp(leftTs); + context.leftTs = leftTs; + context.rightTs = rightTs; + userFunction.processElement(left, right, context, this.collector); + } + + private void removeFromLhsUntil(long maxCleanup) throws Exception { + + // setup state + if (this.lastCleanupRightBuffer.value() == null) { + this.lastCleanupRightBuffer.update(0L); + } + + // remove elements from leftBuffer in range [lastValue, maxCleanup] + Long lastCleanUpRight = lastCleanupRightBuffer.value(); + for (long i = lastCleanUpRight; i <= maxCleanup; i++) { + leftBuffer.remove(i); + } + + lastCleanupRightBuffer.update(maxCleanup); + } + + private void removeFromRhsUntil(long maxCleanup) throws Exception { + + // setup state + if (this.lastCleanupLeftBuffer.value() == null) { + this.lastCleanupLeftBuffer.update(0L); --- End diff -- ditto
---