[ 
https://issues.apache.org/jira/browse/FLINK-2030?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14705227#comment-14705227
 ] 

ASF GitHub Bot commented on FLINK-2030:
---------------------------------------

Github user tillrohrmann commented on a diff in the pull request:

    https://github.com/apache/flink/pull/861#discussion_r37551130
  
    --- Diff: 
flink-staging/flink-ml/src/main/scala/org/apache/flink/ml/statistics/ContinuousHistogram.scala
 ---
    @@ -0,0 +1,315 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one
    + * or more contributor license agreements.  See the NOTICE file
    + * distributed with this work for additional information
    + * regarding copyright ownership.  The ASF licenses this file
    + * to you under the Apache License, Version 2.0 (the
    + * "License"); you may not use this file except in compliance
    + * with the License.  You may obtain a copy of the License at
    + *
    + *     http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +
    +package org.apache.flink.ml.statistics
    +
    +import scala.Double.MaxValue
    +import scala.collection.mutable
    +
    +/** Implementation of a continuous valued online histogram
    +  * Adapted from Ben-Haim and Yom-Tov's Streaming Decision Tree Algorithm
    +  * Refer http://www.jmlr.org/papers/volume11/ben-haim10a/ben-haim10a.pdf
    +  *
    +  * =Parameters=
    +  * -[[capacity]]:
    +  * Number of bins to be used in the histogram
    +  *
    +  * -[[min]]:
    +  * Lower limit on the elements
    +  *
    +  * -[[max]]:
    +  * Upper limit on the elements
    +  */
    +class ContinuousHistogram(capacity: Int, min: Double, max: Double) extends 
OnlineHistogram {
    +
    +  private val lower = min
    +  private val upper = max
    +
    +  require(capacity > 0, "Capacity should be a positive integer")
    +  require(lower < upper, "Lower must be less than upper")
    +
    +  val data = new mutable.ArrayBuffer[(Double, Int)]()
    +
    +  /** Adds a new item to the histogram
    +    *
    +    * @param p value to be added
    +    */
    +  override def add(p: Double): Unit = {
    +    require(p > lower && p < upper, p + " not in (" + lower + "," + upper 
+ ")")
    +    // search for the index where the value is just higher than p
    +    val search = find(p)
    +    // add the new value there, shifting everything to the right
    +    data.insert(search, (p, 1))
    +    // If we're over capacity or any two elements are within 1e-9 of each 
other, merge.
    +    // This will take care of the case if p was actually equal to some 
value in the histogram and
    +    // just increment the value there
    +    mergeElements()
    +  }
    +
    +  /** Merges the histogram with h and returns a histogram with capacity B
    +    *
    +    * @param h histogram to be merged
    +    * @param B capacity of the resultant histogram
    +    * @return Merged histogram with capacity B
    +    */
    +  override def merge(h: OnlineHistogram, B: Int): ContinuousHistogram = {
    +    h match {
    +      case temp: ContinuousHistogram => {
    +        val m: Int = bins
    +        val n: Int = temp.bins
    +        var i, j: Int = 0
    +        val mergeList = new mutable.ArrayBuffer[(Double, Int)]()
    +        while (i < m || j < n) {
    +          if (i >= m) {
    +            mergeList += ((temp.getValue(j), temp.getCounter(j)))
    +            j = j + 1
    +          } else if (j >= n || getValue(i) <= temp.getValue(j)) {
    +            mergeList += data.apply(i)
    +            i = i + 1
    +          } else {
    +            mergeList += ((temp.getValue(j), temp.getCounter(j)))
    +            j = j + 1
    +          }
    +        }
    +        // the size will be brought to capacity while constructing the new 
histogram itself
    +        val finalLower = Math.min(lower, temp.lower)
    +        val finalUpper = Math.max(upper, temp.upper)
    +        val ret = new ContinuousHistogram(B, finalLower, finalUpper)
    +        ret.loadData(mergeList.toArray)
    +        ret
    +      }
    +      case default =>
    +        throw new RuntimeException("Only a continuous histogram is allowed 
to be merged with a " +
    +          "continuous histogram")
    +
    +    }
    +  }
    +
    +  /** Returns the qth quantile of the histogram
    +    *
    +    * @param q Quantile value in (0,1)
    +    * @return Value at quantile q
    +    */
    +  def quantile(q: Double): Double = {
    +    require(bins > 0, "Histogram is empty")
    +    require(q > 0 && q < 1, "Quantile must be between 0 and 1")
    +    val wantedSum = (q * total).round.toInt
    +    var currSum = count(getValue(0))
    +
    +    if (wantedSum < currSum) {
    +      require(lower > -MaxValue, "Set a lower bound before proceeding")
    +      return Math.sqrt(2 * wantedSum * Math.pow(getValue(0) - lower, 2) / 
getCounter(0)) + lower
    +    }
    +
    +    /** Walk the histogram to find sums at every bin value
    +      * As soon as you hit the interval where you should be
    +      * Walk along the trapezoidal line
    +      * This leads to solving a quadratic equation.
    +      */
    +    for (i <- 1 to bins - 1) {
    +      val tmpSum = count(getValue(i))
    +      if (currSum <= wantedSum && wantedSum < tmpSum) {
    +        val neededSum = wantedSum - currSum
    +        val a: Double = getCounter(i) - getCounter(i - 1)
    +        val b: Double = 2 * getCounter(i - 1)
    +        val c: Double = -2 * neededSum
    --- End diff --
    
    Could you elaborate a little bit on the used formula. I don't understand 
*walk along the trapezoidal line*.


> Implement an online histogram with Merging and equalization features
> --------------------------------------------------------------------
>
>                 Key: FLINK-2030
>                 URL: https://issues.apache.org/jira/browse/FLINK-2030
>             Project: Flink
>          Issue Type: Sub-task
>          Components: Machine Learning Library
>            Reporter: Sachin Goel
>            Assignee: Sachin Goel
>            Priority: Minor
>              Labels: ML
>
> For the implementation of the decision tree in 
> https://issues.apache.org/jira/browse/FLINK-1727, we need to implement an 
> histogram with online updates, merging and equalization features. A reference 
> implementation is provided in [1]
> [1].http://www.jmlr.org/papers/volume11/ben-haim10a/ben-haim10a.pdf



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

Reply via email to