[ 
https://issues.apache.org/jira/browse/FLINK-12852?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16876889#comment-16876889
 ] 

Stephan Ewen commented on FLINK-12852:
--------------------------------------

Quick comment to understand the implications of this:

  - The blocking subpartition implementation should not be affected, because it 
eagerly releases resources.
  - If bounded shuffles and rebalancing were always blocking, then this could 
only happen in FORWARD channels.
  - At least in the DataSet API, the FORWARD channels are almost always 
slot-local, so realized via local channels, which are not affected

That means a workaround for DataSet / Table Flink runner could be to have all 
non-FORWARD strategies as blocking shuffles

For the Table Blink runner, we need to think a bit more...

> Deadlock occurs when requiring exclusive buffer for RemoteInputChannel
> ----------------------------------------------------------------------
>
>                 Key: FLINK-12852
>                 URL: https://issues.apache.org/jira/browse/FLINK-12852
>             Project: Flink
>          Issue Type: Bug
>          Components: Runtime / Network
>    Affects Versions: 1.9.0
>            Reporter: Yun Gao
>            Assignee: Yun Gao
>            Priority: Blocker
>              Labels: pull-request-available
>             Fix For: 1.9.0
>
>          Time Spent: 10m
>  Remaining Estimate: 0h
>
> When running tests with an upstream vertex and downstream vertex, deadlock 
> occurs when submitting the job:
> {code:java}
> "Sink: Unnamed (3/500)" #136 prio=5 os_prio=0 tid=0x00007f2cca81b000 
> nid=0x38845 waiting on condition [0x00007f2cbe9fe000]
> java.lang.Thread.State: TIMED_WAITING (parking)
> at sun.misc.Unsafe.park(Native Method)
> - parking to wait for <0x000000073ed6b6f0> (a 
> java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject)
> at java.util.concurrent.locks.LockSupport.parkNanos(LockSupport.java:233)
> at 
> java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.awaitNanos(AbstractQueuedSynchronizer.java:2078)
> at java.util.concurrent.ArrayBlockingQueue.poll(ArrayBlockingQueue.java:418)
> at 
> org.apache.flink.runtime.io.network.buffer.NetworkBufferPool.requestMemorySegments(NetworkBufferPool.java:180)
> at 
> org.apache.flink.runtime.io.network.buffer.NetworkBufferPool.requestMemorySegments(NetworkBufferPool.java:54)
> at 
> org.apache.flink.runtime.io.network.partition.consumer.RemoteInputChannel.assignExclusiveSegments(RemoteInputChannel.java:139)
> at 
> org.apache.flink.runtime.io.network.partition.consumer.SingleInputGate.assignExclusiveSegments(SingleInputGate.java:312)
> - locked <0x000000073fbc81f0> (a java.lang.Object)
> at 
> org.apache.flink.runtime.io.network.partition.consumer.SingleInputGate.setup(SingleInputGate.java:220)
> at 
> org.apache.flink.runtime.taskmanager.Task.setupPartionsAndGates(Task.java:836)
> at org.apache.flink.runtime.taskmanager.Task.run(Task.java:598)
> at java.lang.Thread.run(Thread.java:834)
> {code}
> This is due to the required and max of local buffer pool is not the same and 
> there may be over-allocation, when assignExclusiveSegments there are no 
> available memory.
>  
> The detail of the scenarios is as follows: The parallelism of both upstream 
> vertex and downstream vertex are 1000 and 500 respectively. There are 200 TM 
> and each TM has 10696 buffers( in total and has 10 slots. For a TM that runs 
> 9 upstream tasks and 1 downstream task, the 9 upstream tasks start first with 
> local buffer pool \{required = 500, max = 2 * 500 + 8 = 1008}, it produces 
> data quickly and each occupy about 990 buffers. Then the DownStream task 
> starts and try to assigning exclusive buffers for 1500 -9 = 1491 
> InputChannels. It requires 2981 buffers but only 1786 left. Since not all 
> downstream tasks can start, the job will be blocked finally and no buffer can 
> be released, and the deadlock finally occurred.
>  
> I think although increasing the network memory solves the problem, the 
> deadlock may not be acceptable.  Fined grained resource management  
> Flink-12761 can solve this problem, but AFAIK in 1.9 it will not include the 
> network memory into the ResourceProfile.



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

Reply via email to