wuchong commented on a change in pull request #14905:
URL: https://github.com/apache/flink/pull/14905#discussion_r580142205



##########
File path: 
flink-table/flink-table-planner-blink/src/main/scala/org/apache/flink/table/planner/plan/nodes/physical/stream/StreamPhysicalWindowAggregate.scala
##########
@@ -0,0 +1,137 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements.  See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership.  The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License.  You may obtain a copy of the License at
+ *
+ *     http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.flink.table.planner.plan.nodes.physical.stream
+
+import org.apache.flink.table.api.TableException
+import 
org.apache.flink.table.planner.calcite.FlinkRelBuilder.PlannerNamedWindowProperty
+import org.apache.flink.table.planner.calcite.FlinkTypeFactory
+import org.apache.flink.table.planner.expressions.{PlannerProctimeAttribute, 
PlannerRowtimeAttribute, PlannerWindowEnd, PlannerWindowStart}
+import org.apache.flink.table.planner.plan.logical.WindowingStrategy
+import org.apache.flink.table.planner.plan.nodes.exec.{ExecNode, InputProperty}
+import 
org.apache.flink.table.planner.plan.nodes.exec.stream.StreamExecWindowAggregate
+import org.apache.flink.table.planner.plan.utils.{FlinkRelOptUtil, 
RelExplainUtil}
+import 
org.apache.flink.table.planner.plan.utils.WindowEmitStrategy.{TABLE_EXEC_EMIT_EARLY_FIRE_ENABLED,
 TABLE_EXEC_EMIT_LATE_FIRE_ENABLED}
+import org.apache.flink.table.types.logical.utils.LogicalTypeUtils
+
+import org.apache.calcite.plan.{RelOptCluster, RelTraitSet}
+import org.apache.calcite.rel.`type`.RelDataType
+import org.apache.calcite.rel.core.{Aggregate, AggregateCall}
+import org.apache.calcite.rel.{RelNode, RelWriter, SingleRel}
+import org.apache.calcite.util.ImmutableBitSet
+
+import java.util
+import java.util.Collections
+
+import scala.collection.JavaConverters._
+
+/**
+ * Streaming window aggregate physical node which will be translate to window 
aggregate operator.
+ *
+ * Note: The differences between [[StreamPhysicalWindowAggregate]] and
+ * [[StreamPhysicalGroupWindowAggregate]] is that, 
[[StreamPhysicalWindowAggregate]] is translated
+ * from window TVF syntax, but the other is from the legacy GROUP WINDOW 
FUNCTION syntax.
+ * In the long future, [[StreamPhysicalGroupWindowAggregate]] will be dropped.
+ */
+class StreamPhysicalWindowAggregate(
+    cluster: RelOptCluster,
+    traitSet: RelTraitSet,
+    inputRel: RelNode,
+    val grouping: Array[Int],
+    val aggCalls: Seq[AggregateCall],
+    val windowing: WindowingStrategy,
+    val namedWindowProperties: Seq[PlannerNamedWindowProperty])
+  extends SingleRel(cluster, traitSet, inputRel)
+  with StreamPhysicalRel {
+
+  override def requireWatermark: Boolean = windowing.isRowtime
+
+  override def deriveRowType(): RelDataType = {
+    val groupSet = ImmutableBitSet.of(grouping: _*)
+    val baseType = Aggregate.deriveRowType(
+      cluster.getTypeFactory,
+      getInput.getRowType,
+      false,
+      groupSet,
+      Collections.singletonList(groupSet),
+      aggCalls.asJava)
+    val typeFactory = getCluster.getTypeFactory.asInstanceOf[FlinkTypeFactory]
+    val builder = typeFactory.builder
+    builder.addAll(baseType.getFieldList)
+    namedWindowProperties.foreach { namedProp =>
+      // use types from windowing strategy which keeps the precision and 
timestamp type
+      // cast the type to not null type, because window properties should 
never be null
+      val timeType = namedProp.property match {
+        case PlannerWindowStart(_) | PlannerWindowEnd(_) =>
+          
LogicalTypeUtils.removeTimeAttributes(windowing.timeAttributeType).copy(false)
+        case PlannerRowtimeAttribute(_) | PlannerProctimeAttribute(_) =>
+          windowing.timeAttributeType.copy(false)
+      }
+      builder.add(namedProp.name, 
typeFactory.createFieldTypeFromLogicalType(timeType))
+    }
+    builder.build()
+  }
+
+  override def explainTerms(pw: RelWriter): RelWriter = {
+    val inputRowType = getInput.getRowType
+    val inputFieldNames = inputRowType.getFieldNames.asScala.toArray
+    super.explainTerms(pw)
+      .itemIf("groupBy", RelExplainUtil.fieldToString(grouping, inputRowType), 
grouping.nonEmpty)
+      .item("window", windowing.toSummaryString(inputFieldNames))
+      .item("select", RelExplainUtil.streamWindowAggregationToString(
+        inputRowType,
+        grouping,
+        getRowType,
+        aggCalls,
+        namedWindowProperties))
+  }
+
+  override def copy(
+      traitSet: RelTraitSet,
+      inputs: util.List[RelNode]): RelNode = {
+    new StreamPhysicalWindowAggregate(
+      cluster,
+      traitSet,
+      inputs.get(0),
+      grouping,
+      aggCalls,
+      windowing,
+      namedWindowProperties
+    )
+  }
+
+  override def translateToExecNode(): ExecNode[_] = {
+    val conf = FlinkRelOptUtil.getTableConfigFromContext(this).getConfiguration
+    if (conf.getBoolean(TABLE_EXEC_EMIT_EARLY_FIRE_ENABLED) ||
+      conf.getBoolean(TABLE_EXEC_EMIT_LATE_FIRE_ENABLED)) {
+      throw new TableException("Currently, window table function based 
aggregate doesn't " +
+        s"support early-fire and late-fire configuration " +
+        s"'${TABLE_EXEC_EMIT_EARLY_FIRE_ENABLED.key()}' and " +
+        s"'${TABLE_EXEC_EMIT_LATE_FIRE_ENABLED.key()}'.")
+    }
+    new StreamExecWindowAggregate(

Review comment:
       We can support this in another PR, this can't be supported in little 
code. I don't want to make this PR larger. 

##########
File path: 
flink-table/flink-table-planner-blink/src/main/scala/org/apache/flink/table/planner/plan/nodes/physical/stream/StreamPhysicalWindowAggregate.scala
##########
@@ -0,0 +1,137 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements.  See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership.  The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License.  You may obtain a copy of the License at
+ *
+ *     http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.flink.table.planner.plan.nodes.physical.stream
+
+import org.apache.flink.table.api.TableException
+import 
org.apache.flink.table.planner.calcite.FlinkRelBuilder.PlannerNamedWindowProperty
+import org.apache.flink.table.planner.calcite.FlinkTypeFactory
+import org.apache.flink.table.planner.expressions.{PlannerProctimeAttribute, 
PlannerRowtimeAttribute, PlannerWindowEnd, PlannerWindowStart}
+import org.apache.flink.table.planner.plan.logical.WindowingStrategy
+import org.apache.flink.table.planner.plan.nodes.exec.{ExecNode, InputProperty}
+import 
org.apache.flink.table.planner.plan.nodes.exec.stream.StreamExecWindowAggregate
+import org.apache.flink.table.planner.plan.utils.{FlinkRelOptUtil, 
RelExplainUtil}
+import 
org.apache.flink.table.planner.plan.utils.WindowEmitStrategy.{TABLE_EXEC_EMIT_EARLY_FIRE_ENABLED,
 TABLE_EXEC_EMIT_LATE_FIRE_ENABLED}
+import org.apache.flink.table.types.logical.utils.LogicalTypeUtils
+
+import org.apache.calcite.plan.{RelOptCluster, RelTraitSet}
+import org.apache.calcite.rel.`type`.RelDataType
+import org.apache.calcite.rel.core.{Aggregate, AggregateCall}
+import org.apache.calcite.rel.{RelNode, RelWriter, SingleRel}
+import org.apache.calcite.util.ImmutableBitSet
+
+import java.util
+import java.util.Collections
+
+import scala.collection.JavaConverters._
+
+/**
+ * Streaming window aggregate physical node which will be translate to window 
aggregate operator.
+ *
+ * Note: The differences between [[StreamPhysicalWindowAggregate]] and
+ * [[StreamPhysicalGroupWindowAggregate]] is that, 
[[StreamPhysicalWindowAggregate]] is translated
+ * from window TVF syntax, but the other is from the legacy GROUP WINDOW 
FUNCTION syntax.
+ * In the long future, [[StreamPhysicalGroupWindowAggregate]] will be dropped.
+ */
+class StreamPhysicalWindowAggregate(
+    cluster: RelOptCluster,
+    traitSet: RelTraitSet,
+    inputRel: RelNode,
+    val grouping: Array[Int],
+    val aggCalls: Seq[AggregateCall],
+    val windowing: WindowingStrategy,
+    val namedWindowProperties: Seq[PlannerNamedWindowProperty])
+  extends SingleRel(cluster, traitSet, inputRel)
+  with StreamPhysicalRel {
+
+  override def requireWatermark: Boolean = windowing.isRowtime
+
+  override def deriveRowType(): RelDataType = {
+    val groupSet = ImmutableBitSet.of(grouping: _*)
+    val baseType = Aggregate.deriveRowType(
+      cluster.getTypeFactory,
+      getInput.getRowType,
+      false,
+      groupSet,
+      Collections.singletonList(groupSet),
+      aggCalls.asJava)
+    val typeFactory = getCluster.getTypeFactory.asInstanceOf[FlinkTypeFactory]
+    val builder = typeFactory.builder
+    builder.addAll(baseType.getFieldList)
+    namedWindowProperties.foreach { namedProp =>
+      // use types from windowing strategy which keeps the precision and 
timestamp type
+      // cast the type to not null type, because window properties should 
never be null
+      val timeType = namedProp.property match {
+        case PlannerWindowStart(_) | PlannerWindowEnd(_) =>
+          
LogicalTypeUtils.removeTimeAttributes(windowing.timeAttributeType).copy(false)
+        case PlannerRowtimeAttribute(_) | PlannerProctimeAttribute(_) =>
+          windowing.timeAttributeType.copy(false)
+      }
+      builder.add(namedProp.name, 
typeFactory.createFieldTypeFromLogicalType(timeType))
+    }
+    builder.build()
+  }
+
+  override def explainTerms(pw: RelWriter): RelWriter = {
+    val inputRowType = getInput.getRowType
+    val inputFieldNames = inputRowType.getFieldNames.asScala.toArray
+    super.explainTerms(pw)
+      .itemIf("groupBy", RelExplainUtil.fieldToString(grouping, inputRowType), 
grouping.nonEmpty)
+      .item("window", windowing.toSummaryString(inputFieldNames))
+      .item("select", RelExplainUtil.streamWindowAggregationToString(
+        inputRowType,
+        grouping,
+        getRowType,
+        aggCalls,
+        namedWindowProperties))
+  }
+
+  override def copy(
+      traitSet: RelTraitSet,
+      inputs: util.List[RelNode]): RelNode = {
+    new StreamPhysicalWindowAggregate(
+      cluster,
+      traitSet,
+      inputs.get(0),
+      grouping,
+      aggCalls,
+      windowing,
+      namedWindowProperties
+    )
+  }
+
+  override def translateToExecNode(): ExecNode[_] = {
+    val conf = FlinkRelOptUtil.getTableConfigFromContext(this).getConfiguration
+    if (conf.getBoolean(TABLE_EXEC_EMIT_EARLY_FIRE_ENABLED) ||
+      conf.getBoolean(TABLE_EXEC_EMIT_LATE_FIRE_ENABLED)) {
+      throw new TableException("Currently, window table function based 
aggregate doesn't " +
+        s"support early-fire and late-fire configuration " +
+        s"'${TABLE_EXEC_EMIT_EARLY_FIRE_ENABLED.key()}' and " +
+        s"'${TABLE_EXEC_EMIT_LATE_FIRE_ENABLED.key()}'.")
+    }
+    new StreamExecWindowAggregate(

Review comment:
       We can support this in another PR, this can't be supported in a little 
code. I don't want to make this PR larger. 




----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


Reply via email to