Github user danielblazevski commented on a diff in the pull request:

    https://github.com/apache/flink/pull/2368#discussion_r75973261
  
    --- Diff: docs/apis/streaming/windows.md ---
    @@ -459,42 +459,106 @@ ready for processing. This allows to get the benefit 
of incremental window compu
     the additional meta information that writing a `WindowFunction` provides.
     
     This is an example that shows how incremental aggregation functions can be 
combined with
    -a `WindowFunction`.
    +a `WindowFunction`.  The `FoldFunction`/`WindowFunction` example shows how 
to extract the
    +ending event-time of a window of sensor readings that contain a timestamp, 
    +and the `ReduceFunction`/`WindowFunctions` example shows how to do eager 
window
    +aggregation (only a single element is kept in the window).
     
     <div class="codetabs" markdown="1">
     <div data-lang="java" markdown="1">
     {% highlight java %}
    -DataStream<Tuple2<String, Long>> input = ...;
    +DataStream<SensorReading> input = ...;
     
     // for folding incremental computation
     input
         .keyBy(<key selector>)
         .window(<window assigner>)
    -    .apply(<initial value>, new MyFoldFunction(), new MyWindowFunction());
    +    .apply(Long.MIN_VALUE, new MyFoldFunction(), new MyWindowFunction());
    +
    +/* ... */
    +
    +private static  class myFoldFunction implements 
FoldFunction<SensorReading, Long> {
    +
    +    public Long fold(Long acc, SensorReading s) {
    +        return Math.max(acc, s.timestamp());
    +    }
    +}
    +
    +private static class MyWindowFunction implements WindowFunction<Long, 
Long, String, TimeWindow> {
    +
    +    public void apply(String key, TimeWindow window, Iterable<Long> 
timestamps, Collector<Long> out) {
    +            out.collect(timestamps.iterator().next());
    --- End diff --
    
    @fhueske does this look OK for this case?  If so, I'll finish things up by 
adding the Reduce example and add both corresponding Scala examples
    ```java
    // for folding incremental computation
    input
        .keyBy(<key selector>)
        .window(<window assigner>)
        .apply(new Tuple3<String, Long, Integer>("",0L, 0), new 
MyFoldFunction(), new MyWindowFunction())
    
    /* ... */
    
    private static class MyFoldFunction implements FoldFunction<SensorReading,
            Tuple3<String, Long, Integer> > {
    
        public Tuple3<String, Long, Integer> fold(Tuple3<String, Long, Integer> 
acc, SensorReading s) {
            Integer cur = acc.getField(2);
            return new Tuple3<String, Long, Integer> (acc.getField(0), 
acc.getField(1), cur + 1);
        }
    }
    
    private static class MyWindowFunction implements 
WindowFunction<Tuple3<String, Long, Integer>,
            Tuple3<String, Long, Integer>, String, TimeWindow> {
        public void apply(String s,
                          TimeWindow window,
                          Iterable<Tuple3<String, Long, Integer>> counts,
                          Collector<Tuple3<String, Long, Integer>> out) {
            out.collect(new Tuple3<String, Long, Integer>(s, window.getEnd(),
                    counts.iterator().next().getField(2));
        }
    }
    ```
    
    I found that I had to have the `FoldFunction` include `Tuple3` in its 
signature since the `WindowFunction` must be of the form `WindowFunction<ACC, 
ACC, K, W>` according to 
[here](https://github.com/apache/flink/blob/b8299bf92d8e3dbe140dd89602699394019b783d/flink-streaming-java/src/main/java/org/apache/flink/streaming/api/functions/windowing/FoldApplyWindowFunction.java)


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---

Reply via email to