zhipeng93 commented on code in PR #110:
URL: https://github.com/apache/flink-ml/pull/110#discussion_r898854960


##########
flink-ml-lib/src/main/java/org/apache/flink/ml/clustering/kmeans/KMeans.java:
##########
@@ -153,39 +149,24 @@ public IterationBodyResult process(
             DataStream<Integer> terminationCriteria =
                     centroids.flatMap(new TerminateOnMaxIter(maxIterationNum));
 
-            DataStream<Tuple2<Integer, DenseVector>> centroidIdAndPoints =
+            DataStream<Tuple2<Integer[], DenseVector[]>> centroidIdAndPoints =
                     points.connect(centroids.broadcast())
                             .transform(
-                                    "SelectNearestCentroid",
+                                    "CentroidsUpdateAccumulator",
                                     new TupleTypeInfo<>(
-                                            BasicTypeInfo.INT_TYPE_INFO,
-                                            DenseVectorTypeInfo.INSTANCE),
-                                    new 
SelectNearestCentroidOperator(distanceMeasure));
+                                            
BasicArrayTypeInfo.INT_ARRAY_TYPE_INFO,
+                                            ObjectArrayTypeInfo.getInfoFor(
+                                                    
DenseVectorTypeInfo.INSTANCE)),
+                                    new 
CentroidsUpdateAccumulator(distanceMeasure));

Review Comment:
   One optimization from algorithm side could be pre-compute the norm of each 
data point and thus accelerate the computing of `findClosestCentroidId`.
   
   A similar solution could be found [1] [2].
   
   [1] 
https://github.com/alibaba/Alink/blob/9ae07329a9fb77e39c334c09c79e5016b62f59ee/core/src/main/java/com/alibaba/alink/operator/common/distance/FastDistance.java
   [2] 
https://github.com/apache/spark/blob/2fa98a6a0971cafeb98a2148a962cf8d79381842/mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeans.scala#L222



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to