[ 
https://issues.apache.org/jira/browse/FLINK-4691?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15551525#comment-15551525
 ] 

ASF GitHub Bot commented on FLINK-4691:
---------------------------------------

Github user fhueske commented on a diff in the pull request:

    https://github.com/apache/flink/pull/2562#discussion_r82147669
  
    --- Diff: 
flink-libraries/flink-table/src/main/scala/org/apache/flink/api/table/plan/nodes/datastream/DataStreamAggregate.scala
 ---
    @@ -0,0 +1,261 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one
    + * or more contributor license agreements.  See the NOTICE file
    + * distributed with this work for additional information
    + * regarding copyright ownership.  The ASF licenses this file
    + * to you under the Apache License, Version 2.0 (the
    + * "License"); you may not use this file except in compliance
    + * with the License.  You may obtain a copy of the License at
    + *
    + *     http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +
    +package org.apache.flink.api.table.plan.nodes.datastream
    +
    +import org.apache.calcite.plan.{RelOptCluster, RelTraitSet}
    +import org.apache.calcite.rel.`type`.RelDataType
    +import org.apache.calcite.rel.core.AggregateCall
    +import org.apache.calcite.rel.{RelNode, RelWriter, SingleRel}
    +import org.apache.flink.api.common.typeinfo.{BasicTypeInfo, 
TypeInformation}
    +import org.apache.flink.api.java.tuple.Tuple
    +import org.apache.flink.api.table.expressions.{Expression, Literal}
    +import org.apache.flink.api.table.plan.logical._
    +import org.apache.flink.api.table.plan.nodes.FlinkAggregate
    +import 
org.apache.flink.api.table.plan.nodes.datastream.DataStreamAggregate.{createKeyedWindowedStream,
 createNonKeyedWindowedStream}
    +import org.apache.flink.api.table.runtime.aggregate.AggregateUtil._
    +import 
org.apache.flink.api.table.runtime.aggregate.{AggregateAllWindowFunction, 
AggregateUtil, AggregateWindowFunction}
    +import org.apache.flink.api.table.typeutils.TypeCheckUtils.isTimeInterval
    +import org.apache.flink.api.table.typeutils.{IntervalTypeInfo, 
RowTypeInfo, TypeCheckUtils, TypeConverter}
    +import org.apache.flink.api.table.{FlinkTypeFactory, Row, 
StreamTableEnvironment}
    +import org.apache.flink.streaming.api.datastream.{AllWindowedStream, 
DataStream, KeyedStream, WindowedStream}
    +import 
org.apache.flink.streaming.api.functions.windowing.{AllWindowFunction, 
WindowFunction}
    +import org.apache.flink.streaming.api.windowing.assigners._
    +import org.apache.flink.streaming.api.windowing.time.Time
    +import org.apache.flink.streaming.api.windowing.windows.{Window => 
DataStreamWindow}
    +
    +import scala.collection.JavaConverters._
    +
    +class DataStreamAggregate(
    +    window: LogicalWindow,
    +    cluster: RelOptCluster,
    +    traitSet: RelTraitSet,
    +    inputNode: RelNode,
    +    namedAggregates: Seq[CalcitePair[AggregateCall, String]],
    +    rowRelDataType: RelDataType,
    +    inputType: RelDataType,
    +    grouping: Array[Int])
    +  extends SingleRel(cluster, traitSet, inputNode)
    +  with FlinkAggregate
    +  with DataStreamRel {
    +
    +  override def deriveRowType() = rowRelDataType
    +
    +  override def copy(traitSet: RelTraitSet, inputs: 
java.util.List[RelNode]): RelNode = {
    +    new DataStreamAggregate(
    +      window,
    +      cluster,
    +      traitSet,
    +      inputs.get(0),
    +      namedAggregates,
    +      getRowType,
    +      inputType,
    +      grouping)
    +  }
    +
    +  override def toString: String = {
    +    s"Aggregate(${ if (!grouping.isEmpty) {
    +      s"groupBy: (${groupingToString(inputType, grouping)}), "
    +    } else {
    +      ""
    +    }}window: ($window), " +
    +      s"select: (${aggregationToString(inputType, grouping, getRowType, 
namedAggregates)}))"
    +  }
    +
    +  override def explainTerms(pw: RelWriter): RelWriter = {
    +    super.explainTerms(pw)
    +      .itemIf("groupBy", groupingToString(inputType, grouping), 
!grouping.isEmpty)
    +      .item("window", window)
    +      .item("select", aggregationToString(inputType, grouping, getRowType, 
namedAggregates))
    +  }
    +
    +  override def translateToPlan(
    +      tableEnv: StreamTableEnvironment,
    +      expectedType: Option[TypeInformation[Any]]): DataStream[Any] = {
    +    val config = tableEnv.getConfig
    +
    +    val groupingKeys = grouping.indices.toArray
    +    // add grouping fields, position keys in the input, and input type
    +    val aggregateResult = 
AggregateUtil.createOperatorFunctionsForAggregates(namedAggregates,
    +      inputType, getRowType, grouping, config)
    +
    +    val inputDS = input.asInstanceOf[DataStreamRel].translateToPlan(
    +      tableEnv,
    +      // tell the input operator that this operator currently only 
supports Rows as input
    +      Some(TypeConverter.DEFAULT_ROW_TYPE))
    +
    +    // get the output types
    +    val fieldTypes: Array[TypeInformation[_]] = 
getRowType.getFieldList.asScala
    +    .map(field => FlinkTypeFactory.toTypeInfo(field.getType))
    +    .toArray
    +
    +    val aggString = aggregationToString(inputType, grouping, getRowType, 
namedAggregates)
    +    val prepareOpName = s"prepare select: ($aggString)"
    +    val mappedInput = inputDS
    +      .map(aggregateResult._1)
    +      .name(prepareOpName)
    +
    +    val groupReduceFunction = aggregateResult._2
    +    val rowTypeInfo = new RowTypeInfo(fieldTypes)
    +
    +    val result = {
    +      // grouped / keyed aggregation
    +      if (groupingKeys.length > 0) {
    +        val aggOpName = s"groupBy: (${groupingToString(inputType, 
grouping)}), " +
    +          s"window: ($window), " +
    +          s"select: ($aggString)"
    +        val aggregateFunction = new 
AggregateWindowFunction(groupReduceFunction)
    +
    +        val keyedStream = mappedInput.keyBy(groupingKeys: _*)
    +
    +        val windowedStream = createKeyedWindowedStream(window, keyedStream)
    +          .asInstanceOf[WindowedStream[Row, Tuple, DataStreamWindow]]
    +
    +          windowedStream
    +            .apply(aggregateFunction)
    +            .returns(rowTypeInfo)
    +            .name(aggOpName)
    +            .asInstanceOf[DataStream[Any]]
    +      }
    +      // global / non-keyed aggregation
    +      else {
    +        val aggOpName = s"window: ($window), select: ($aggString)"
    +        val aggregateFunction = new 
AggregateAllWindowFunction(groupReduceFunction)
    +
    +        val windowedStream = createNonKeyedWindowedStream(window, 
mappedInput)
    +          .asInstanceOf[AllWindowedStream[Row, DataStreamWindow]]
    +
    +        windowedStream
    +            .apply(aggregateFunction)
    +            .returns(rowTypeInfo)
    +            .name(aggOpName)
    +            .asInstanceOf[DataStream[Any]]
    +      }
    +    }
    +
    +    // if the expected type is not a Row, inject a mapper to convert to 
the expected type
    +    expectedType match {
    +      case Some(typeInfo) if typeInfo.getTypeClass != classOf[Row] =>
    +        val mapName = s"convert: 
(${getRowType.getFieldNames.asScala.toList.mkString(", ")})"
    +        result.map(getConversionMapper(
    +          config = config,
    +          nullableInput = false,
    +          inputType = rowTypeInfo.asInstanceOf[TypeInformation[Any]],
    +          expectedType = expectedType.get,
    +          conversionOperatorName = "DataStreamAggregateConversion",
    +          fieldNames = getRowType.getFieldNames.asScala
    +        ))
    +        .name(mapName)
    +      case _ => result
    +    }
    +  }
    +
    +}
    +
    +object DataStreamAggregate {
    +
    +  private def createKeyedWindowedStream(groupWindow: LogicalWindow, 
stream: KeyedStream[Row, Tuple])
    +    : WindowedStream[Row, Tuple, _ <: DataStreamWindow] = groupWindow 
match {
    +
    +    case ProcessingTimeTumblingGroupWindow(_, size) if 
isTimeInterval(size.resultType) =>
    +      stream.window(TumblingProcessingTimeWindows.of(asTime(size)))
    +
    +    case ProcessingTimeTumblingGroupWindow(_, size) =>
    +      stream.countWindow(asCount(size))
    +
    +    case EventTimeTumblingGroupWindow(_, _, size) if 
isTimeInterval(size.resultType) =>
    +      stream
    +        .window(TumblingEventTimeWindows.of(asTime(size)))
    +
    +    case EventTimeTumblingGroupWindow(_, _, size) =>
    +      stream.countWindow(asCount(size))
    +
    +    case ProcessingTimeSlidingGroupWindow(_, size, slide) if 
isTimeInterval(size.resultType) =>
    +      stream.window(SlidingProcessingTimeWindows.of(asTime(size), 
asTime(slide)))
    +
    +    case ProcessingTimeSlidingGroupWindow(_, size, slide) =>
    +      stream.countWindow(asCount(size), asCount(slide))
    +
    +    case EventTimeSlidingGroupWindow(_, _, size, slide)
    +        if isTimeInterval(size.resultType) =>
    +      stream
    +        .window(SlidingEventTimeWindows.of(asTime(size), asTime(slide)))
    +
    +    case EventTimeSlidingGroupWindow(_, _, size, slide) =>
    +      stream.countWindow(asCount(size), asCount(slide))
    +
    +    case ProcessingTimeSessionGroupWindow(_, gap: Expression) =>
    +      stream.window(ProcessingTimeSessionWindows.withGap(asTime(gap)))
    +
    +    case EventTimeSessionGroupWindow(_, _, gap) =>
    +      stream
    +        .window(EventTimeSessionWindows.withGap(asTime(gap)))
    +  }
    +
    +  private def createNonKeyedWindowedStream(groupWindow: LogicalWindow, 
stream: DataStream[Row])
    +    : AllWindowedStream[Row, _ <: DataStreamWindow] = groupWindow match {
    +
    +    case ProcessingTimeTumblingGroupWindow(_, size) if 
isTimeInterval(size.resultType) =>
    +      stream.windowAll(TumblingProcessingTimeWindows.of(asTime(size)))
    +
    +    case ProcessingTimeTumblingGroupWindow(_, size) =>
    +      stream.countWindowAll(asCount(size))
    +
    +    case EventTimeTumblingGroupWindow(_, _, size) if 
isTimeInterval(size.resultType) =>
    +      stream
    +        .windowAll(TumblingEventTimeWindows.of(asTime(size)))
    +
    +    case EventTimeTumblingGroupWindow(_, _, size) =>
    +      stream.countWindowAll(asCount(size))
    --- End diff --
    
    sort on event-time.


> Add group-windows for streaming tables        
> ---------------------------------------
>
>                 Key: FLINK-4691
>                 URL: https://issues.apache.org/jira/browse/FLINK-4691
>             Project: Flink
>          Issue Type: Sub-task
>          Components: Table API & SQL
>            Reporter: Timo Walther
>            Assignee: Timo Walther
>
> Add Tumble, Slide, Session group-windows for streaming tables as described in 
> [FLIP-11|https://cwiki.apache.org/confluence/display/FLINK/FLIP-11%3A+Table+API+Stream+Aggregations].
>  
> Implementation of group-windows on streaming tables. This includes 
> implementing the API of group-windows, the logical validation for 
> group-windows, and the definition of the “rowtime” and “systemtime” keywords. 
> Group-windows on batch tables won’t be initially supported and will throw an 
> exception.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

Reply via email to