Maximilian Michels created FLINK-34538:
------------------------------------------

             Summary: Tune memory of autoscaled jobs
                 Key: FLINK-34538
                 URL: https://issues.apache.org/jira/browse/FLINK-34538
             Project: Flink
          Issue Type: New Feature
          Components: Autoscaler, Kubernetes Operator
            Reporter: Maximilian Michels
            Assignee: Maximilian Michels
             Fix For: kubernetes-operator-1.8.0


The current autoscaling algorithm adjusts the parallelism of the job task 
vertices according to the processing needs. By adjusting the parallelism, we 
systematically scale the amount of CPU for a task. At the same time, we also 
indirectly change the amount of memory tasks have at their dispense. However, 
there are some problems with this.
 # Memory is overprovisioned: On scale up we may add more memory than we 
actually need. Even on scale down, the memory / cpu ratio can still be off and 
too much memory is used.
 # Memory is underprovisioned: For stateful jobs, we risk running into 
OutOfMemoryErrors on scale down. Even before running out of memory, too little 
memory can have a negative impact on the effectiveness of the scaling.

We lack the capability to tune memory proportionally to the processing needs. 
In the same way that we measure CPU usage and size the tasks accordingly, we 
need to evaluate memory usage and adjust the heap memory size.

https://docs.google.com/document/d/19GXHGL_FvN6WBgFvLeXpDABog2H_qqkw1_wrpamkFSc/edit

 



--
This message was sent by Atlassian Jira
(v8.20.10#820010)

Reply via email to