Github user fhueske commented on a diff in the pull request: https://github.com/apache/flink/pull/2811#discussion_r89482516 --- Diff: flink-libraries/flink-table/src/main/scala/org/apache/flink/api/table/plan/nodes/dataset/DataSetSingleRowCross.scala --- @@ -0,0 +1,180 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.flink.api.table.plan.nodes.dataset + +import org.apache.calcite.plan._ +import org.apache.calcite.rel.`type`.RelDataType +import org.apache.calcite.rel.metadata.RelMetadataQuery +import org.apache.calcite.rel.{BiRel, RelNode, RelWriter} +import org.apache.flink.api.common.functions.{MapFunction, RichMapFunction} +import org.apache.flink.api.common.typeinfo.TypeInformation +import org.apache.flink.api.java.DataSet +import org.apache.flink.api.table.codegen.CodeGenerator +import org.apache.flink.api.table.runtime.RichMapRunner +import org.apache.flink.api.table.typeutils.TypeConverter.determineReturnType +import org.apache.flink.api.table.{BatchTableEnvironment, TableConfig} + +import scala.collection.JavaConversions._ +import scala.collection.JavaConverters._ + +/** + * Flink RelNode which matches along with CrossOperator. + */ +class DataSetSingleRowCross( + cluster: RelOptCluster, + traitSet: RelTraitSet, + leftNode: RelNode, + rightNode: RelNode, + leftIsSingle: Boolean, + rowRelDataType: RelDataType, + joinRowType: RelDataType, + ruleDescription: String) + extends BiRel(cluster, traitSet, leftNode, rightNode) + with DataSetRel { + + override def deriveRowType() = rowRelDataType + + override def copy(traitSet: RelTraitSet, inputs: java.util.List[RelNode]): RelNode = { + new DataSetSingleRowCross( + cluster, + traitSet, + inputs.get(0), + inputs.get(1), + leftIsSingle, + getRowType, + joinRowType, + ruleDescription) + } + + override def toString: String = { + s"$joinTypeToString(where: ($joinConditionToString), join: ($joinSelectionToString))" + } + + override def explainTerms(pw: RelWriter): RelWriter = { + super.explainTerms(pw) + .item("where", joinConditionToString) + .item("join", joinSelectionToString) + .item("joinType", joinTypeToString) + } + + override def computeSelfCost (planner: RelOptPlanner, metadata: RelMetadataQuery): RelOptCost = { + val children = this.getInputs + children.foldLeft(planner.getCostFactory.makeZeroCost()) { (cost, child) => + val rowCnt = metadata.getRowCount(child) + val rowSize = this.estimateRowSize(child.getRowType) + cost.plus(planner.getCostFactory.makeCost(rowCnt, rowCnt, rowCnt * rowSize)) + } + } + + override def translateToPlan( + tableEnv: BatchTableEnvironment, + expectedType: Option[TypeInformation[Any]]): DataSet[Any] = { + + val leftDataSet = left.asInstanceOf[DataSetRel].translateToPlan(tableEnv) + val rightDataSet = right.asInstanceOf[DataSetRel].translateToPlan(tableEnv) + val broadcastSetName = "joinSet" + val mapSideJoin = generateMapFunction( + tableEnv.getConfig, + leftDataSet.getType, + rightDataSet.getType, + leftIsSingle, + broadcastSetName, + expectedType) + + val (multiRowDataSet, singleRowDataSet) = + if (leftIsSingle) { + (rightDataSet, leftDataSet) + } else { + (leftDataSet, rightDataSet) + } + + multiRowDataSet + .map(mapSideJoin) + .withBroadcastSet(singleRowDataSet, broadcastSetName) + .name(getMapOperatorName) + .asInstanceOf[DataSet[Any]] + } + + private def generateMapFunction( --- End diff -- Actually, I think it is easier and requires less additional code to generate a regular `JoinFunction` as done in the `DataSetJoin` and call it from the wrapping `RichMapFunction` with the input value from `map()` and the broadcasted value. With this we can move the broadcast and `RichFunction` logic completely to the wrapper and do not need any changes to the code generation.
--- If your project is set up for it, you can reply to this email and have your reply appear on GitHub as well. If your project does not have this feature enabled and wishes so, or if the feature is enabled but not working, please contact infrastructure at infrastruct...@apache.org or file a JIRA ticket with INFRA. ---