[
https://issues.apache.org/jira/browse/FLINK-5658?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15936199#comment-15936199
]
ASF GitHub Bot commented on FLINK-5658:
---------------------------------------
Github user fhueske commented on a diff in the pull request:
https://github.com/apache/flink/pull/3386#discussion_r107390469
--- Diff:
flink-libraries/flink-table/src/main/scala/org/apache/flink/table/runtime/aggregate/UnboundedEventTimeOverProcessFunction.scala
---
@@ -0,0 +1,201 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements. See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership. The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.flink.table.runtime.aggregate
+
+import java.util
+
+import org.apache.flink.api.common.typeinfo.{BasicTypeInfo,
TypeInformation}
+import org.apache.flink.configuration.Configuration
+import org.apache.flink.types.Row
+import org.apache.flink.streaming.api.functions.ProcessFunction
+import org.apache.flink.util.{Collector, Preconditions}
+import org.apache.flink.api.common.state._
+import org.apache.flink.api.common.typeutils.TypeSerializer
+import org.apache.flink.api.java.tuple.Tuple2
+import org.apache.flink.api.java.typeutils.TupleTypeInfo
+import org.apache.flink.streaming.api.operators.TimestampedCollector
+import org.apache.flink.table.functions.{Accumulator, AggregateFunction}
+
+
+/**
+ * A ProcessFunction to support unbounded event-time over-window
+ *
+ * @param aggregates the aggregate functions
+ * @param aggFields the filed index which the aggregate functions use
+ * @param forwardedFieldCount the input fields count
+ * @param intermediateType the intermediate row tye which the state saved
+ * @param inputType the input row tye which the state saved
+ *
+ */
+class UnboundedEventTimeOverProcessFunction(
+ private val aggregates: Array[AggregateFunction[_]],
+ private val aggFields: Array[Int],
+ private val forwardedFieldCount: Int,
+ private val intermediateType: TypeInformation[Row],
+ private val inputType: TypeInformation[Row])
+ extends ProcessFunction[Row, Row]{
+
+ Preconditions.checkNotNull(aggregates)
+ Preconditions.checkNotNull(aggFields)
+ Preconditions.checkArgument(aggregates.length == aggFields.length)
+
+ private var output: Row = _
+ private var accumulatorState: ValueState[Row] = _
+ private var rowState: ListState[Tuple2[Long, Row]] = _
+
+
+ override def open(config: Configuration) {
+ output = new Row(forwardedFieldCount + aggregates.length)
+ val stateDescriptor: ValueStateDescriptor[Row] =
+ new ValueStateDescriptor[Row]("accumulatorstate", intermediateType)
+ accumulatorState = getRuntimeContext.getState[Row](stateDescriptor)
+
+ val tuple2Type: TypeInformation[Tuple2[Long, Row]] =
+ new TupleTypeInfo(BasicTypeInfo.LONG_TYPE_INFO, inputType)
+ .asInstanceOf[TypeInformation[Tuple2[Long, Row]]]
+ val tupleStateDescriptor: ListStateDescriptor[Tuple2[Long, Row]] =
+ new ListStateDescriptor[Tuple2[Long, Row]]("rowliststate",
tuple2Type)
+ rowState = getRuntimeContext.getListState[Tuple2[Long,
Row]](tupleStateDescriptor)
+
+ }
+
+ /**
+ * Process one element from the input stream, not emit the output
+ *
+ * @param input The input value.
+ * @param ctx The ctx to register timer or get current time
+ * @param out The collector for returning result values.
+ *
+ */
+ override def processElement(
+ input: Row,
+ ctx: ProcessFunction[Row, Row]#Context,
+ out: Collector[Row]): Unit = {
+
+ // discard later record
+ if (ctx.timestamp() >= ctx.timerService().currentWatermark()) {
+ // ensure every key just register on timer
+
ctx.timerService.registerEventTimeTimer(ctx.timerService.currentWatermark + 1)
+
+ rowState.add(new Tuple2(ctx.timestamp, input))
+ }
+ }
+
+ /**
+ * Called when a timer set fires, sort current records according the
timestamp
+ * and emit the output
+ *
+ * @param timestamp The timestamp of the firing timer.
+ * @param ctx The ctx to register timer or get current time
+ * @param out The collector for returning result values.
+ */
+ override def onTimer(
+ timestamp: Long,
+ ctx: ProcessFunction[Row, Row]#OnTimerContext,
+ out: Collector[Row]): Unit = {
+
+ val rowList = rowState.get.iterator
+ if (rowList.hasNext) {
+ val curWatermark = ctx.timerService.currentWatermark
+ val sortList = new util.LinkedList[Tuple2[Long, Row]]()
+ val nextWatermarkList = new util.ArrayList[Tuple2[Long, Row]]()
+ var i = 0
+
+ // sort record according timestamp
+ do {
+ val row = rowList.next
+ if (row.f0 > curWatermark) {
+ nextWatermarkList.add(row)
+ } else {
+ insertToSortedList(row, sortList)
+ }
+ } while (rowList.hasNext)
+
+ // emit the output in order
+ var lastAccumulator = accumulatorState.value
+ if (lastAccumulator == null) {
+ lastAccumulator = new Row(aggregates.length)
+ while (i < aggregates.length) {
+ lastAccumulator.setField(i, aggregates(i).createAccumulator())
+ i += 1
+ }
+ }
+
+ val listIter = sortList.listIterator()
+ while (listIter.hasNext) {
+ val curTuple = listIter.next
+ i = 0
+ while (i < forwardedFieldCount) {
+ output.setField(i, curTuple.f1.getField(i))
+ i += 1
+ }
+
+ i = 0
+ while (i < aggregates.length) {
+ val index = forwardedFieldCount + i
+ val accumulator =
lastAccumulator.getField(i).asInstanceOf[Accumulator]
+ aggregates(i).accumulate(accumulator,
curTuple.f1.getField(aggFields(i)))
+ output.setField(index, aggregates(i).getValue(accumulator))
+ i += 1
+ }
+
+ out match {
+ case collect: TimestampedCollector[Row] =>
collect.setAbsoluteTimestamp(curTuple.f0)
+ case _ =>
+ }
+ out.collect(output)
+ }
+
+ accumulatorState.update(lastAccumulator)
+ rowState.clear
--- End diff --
add `()` because method modifies state
> Add event time OVER RANGE BETWEEN UNBOUNDED PRECEDING aggregation to SQL
> ------------------------------------------------------------------------
>
> Key: FLINK-5658
> URL: https://issues.apache.org/jira/browse/FLINK-5658
> Project: Flink
> Issue Type: Sub-task
> Components: Table API & SQL
> Reporter: Fabian Hueske
> Assignee: Yuhong Hong
>
> The goal of this issue is to add support for OVER RANGE aggregations on event
> time streams to the SQL interface.
> Queries similar to the following should be supported:
> {code}
> SELECT
> a,
> SUM(b) OVER (PARTITION BY c ORDER BY rowTime() RANGE BETWEEN UNBOUNDED
> PRECEDING AND CURRENT ROW) AS sumB,
> MIN(b) OVER (PARTITION BY c ORDER BY rowTime() RANGE BETWEEN UNBOUNDED
> PRECEDING AND CURRENT ROW) AS minB
> FROM myStream
> {code}
> The following restrictions should initially apply:
> - All OVER clauses in the same SELECT clause must be exactly the same.
> - The PARTITION BY clause is optional (no partitioning results in single
> threaded execution).
> - The ORDER BY clause may only have rowTime() as parameter. rowTime() is a
> parameterless scalar function that just indicates processing time mode.
> - bounded PRECEDING is not supported (see FLINK-5655)
> - FOLLOWING is not supported.
> The restrictions will be resolved in follow up issues. If we find that some
> of the restrictions are trivial to address, we can add the functionality in
> this issue as well.
> This issue includes:
> - Design of the DataStream operator to compute OVER ROW aggregates
> - Translation from Calcite's RelNode representation (LogicalProject with
> RexOver expression).
--
This message was sent by Atlassian JIRA
(v6.3.15#6346)