Github user fhueske commented on a diff in the pull request:

    https://github.com/apache/flink/pull/3590#discussion_r107642048
  
    --- Diff: 
flink-libraries/flink-table/src/main/scala/org/apache/flink/table/plan/nodes/datastream/DataStreamOverAggregate.scala
 ---
    @@ -119,6 +150,57 @@ class DataStreamOverAggregate(
     
       }
     
    +  def createTimeBoundedProcessingTimeOverWindow(inputDS: DataStream[Row]): 
DataStream[Row] = {
    +
    +    val overWindow: Group = logicWindow.groups.get(0)
    +    val partitionKeys: Array[Int] = overWindow.keys.toArray
    +    val namedAggregates: Seq[CalcitePair[AggregateCall, String]] = 
generateNamedAggregates
    +
    +    val index = 
overWindow.lowerBound.getOffset.asInstanceOf[RexInputRef].getIndex
    +    val count = input.getRowType().getFieldCount()
    +    val lowerboundIndex = index - count
    +    
    +    
    +    val time_boundary = 
logicWindow.constants.get(lowerboundIndex).getValue2 match {
    +      case _: java.math.BigDecimal => 
logicWindow.constants.get(lowerboundIndex)
    +         .getValue2.asInstanceOf[java.math.BigDecimal].longValue()
    +      case _ => throw new TableException("OVER Window boundaries must be 
numeric")
    +    }
    +
    +     // get the output types
    +    val rowTypeInfo = 
FlinkTypeFactory.toInternalRowTypeInfo(getRowType).asInstanceOf[RowTypeInfo]
    +         
    +    val result: DataStream[Row] =
    +        // partitioned aggregation
    +        if (partitionKeys.nonEmpty) {
    +          
    +          val processFunction = 
AggregateUtil.CreateTimeBoundedProcessingOverProcessFunction(
    +            namedAggregates,
    +            inputType,
    +            time_boundary)
    +          
    +          inputDS
    +          .keyBy(partitionKeys: _*)
    +          .process(processFunction)
    +          .returns(rowTypeInfo)
    +          .name(aggOpName)
    +          .asInstanceOf[DataStream[Row]]
    +        } else { // non-partitioned aggregation
    +          val processFunction = 
AggregateUtil.CreateTimeBoundedProcessingOverProcessFunction(
    --- End diff --
    
    When using the RocksDB state backend, keys will be iterated in sorted 
order. Hence, sorting will be of linear complexity.
    
    I think you underestimate the effort of serializing and deserializing 
(which includes the effort to create objects and gc them later). Typically a 
large percentage of cycles is spent for this. 


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---

Reply via email to