[ 
https://issues.apache.org/jira/browse/HIVE-17684?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Sahil Takiar updated HIVE-17684:
--------------------------------
    Attachment: HIVE-17684.11.patch

> HoS memory issues with MapJoinMemoryExhaustionHandler
> -----------------------------------------------------
>
>                 Key: HIVE-17684
>                 URL: https://issues.apache.org/jira/browse/HIVE-17684
>             Project: Hive
>          Issue Type: Bug
>          Components: Spark
>            Reporter: Sahil Takiar
>            Assignee: Misha Dmitriev
>            Priority: Major
>         Attachments: HIVE-17684.01.patch, HIVE-17684.02.patch, 
> HIVE-17684.03.patch, HIVE-17684.04.patch, HIVE-17684.05.patch, 
> HIVE-17684.06.patch, HIVE-17684.07.patch, HIVE-17684.08.patch, 
> HIVE-17684.09.patch, HIVE-17684.10.patch, HIVE-17684.11.patch
>
>
> We have seen a number of memory issues due the {{HashSinkOperator}} use of 
> the {{MapJoinMemoryExhaustionHandler}}. This handler is meant to detect 
> scenarios where the small table is taking too much space in memory, in which 
> case a {{MapJoinMemoryExhaustionError}} is thrown.
> The configs to control this logic are:
> {{hive.mapjoin.localtask.max.memory.usage}} (default 0.90)
> {{hive.mapjoin.followby.gby.localtask.max.memory.usage}} (default 0.55)
> The handler works by using the {{MemoryMXBean}} and uses the following logic 
> to estimate how much memory the {{HashMap}} is consuming: 
> {{MemoryMXBean#getHeapMemoryUsage().getUsed() / 
> MemoryMXBean#getHeapMemoryUsage().getMax()}}
> The issue is that {{MemoryMXBean#getHeapMemoryUsage().getUsed()}} can be 
> inaccurate. The value returned by this method returns all reachable and 
> unreachable memory on the heap, so there may be a bunch of garbage data, and 
> the JVM just hasn't taken the time to reclaim it all. This can lead to 
> intermittent failures of this check even though a simple GC would have 
> reclaimed enough space for the process to continue working.
> We should re-think the usage of {{MapJoinMemoryExhaustionHandler}} for HoS. 
> In Hive-on-MR this probably made sense to use because every Hive task was run 
> in a dedicated container, so a Hive Task could assume it created most of the 
> data on the heap. However, in Hive-on-Spark there can be multiple Hive Tasks 
> running in a single executor, each doing different things.



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

Reply via email to